This documentation is automatically generated by competitive-verifier/competitive-verifier
#include "../../../../template/template.hpp"
#define PROBLEM "https://onlinejudge.u-aizu.ac.jp/courses/lesson/8/ITP2/7/ITP2_7_B"
#include "../../../../data-structure/balanced-binary-search-tree/RedBlackTree.hpp"
int main() {
cin.tie(0)->sync_with_stdio(0);
RedBlackTree t;
int q;
in(q);
int siz = 0;
rep(i, q) {
int com, x;
in(com, x);
if (com == 0) {
if (!t.contains(x)) {
t.insert(x);
siz++;
}
out(siz);
} else if (com == 1) {
out((t.contains(x) ? 1 : 0));
} else {
if (t.contains(x)) {
t.erase(x);
siz--;
}
}
}
}
#line 2 "template/template.hpp"
#pragma region Macros
#include <bits/stdc++.h>
using namespace std;
using lint = long long;
using ull = unsigned long long;
using ld = long double;
using int128 = __int128_t;
#define all(x) (x).begin(), (x).end()
#define uniqv(v) v.erase(unique(all(v)), v.end())
#define OVERLOAD_REP(_1, _2, _3, name, ...) name
#define REP1(i, n) for (auto i = std::decay_t<decltype(n)>{}; (i) != (n); ++(i))
#define REP2(i, l, r) for (auto i = (l); (i) != (r); ++(i))
#define rep(...) OVERLOAD_REP(__VA_ARGS__, REP2, REP1)(__VA_ARGS__)
#define logfixed(x) cout << fixed << setprecision(10) << x << endl;
ostream &operator<<(ostream &dest, __int128_t value) {
ostream::sentry s(dest);
if (s) {
__uint128_t tmp = value < 0 ? -value : value;
char buffer[128];
char *d = end(buffer);
do {
--d;
*d = "0123456789"[tmp % 10];
tmp /= 10;
} while (tmp != 0);
if (value < 0) {
--d;
*d = '-';
}
int len = end(buffer) - d;
if (dest.rdbuf()->sputn(d, len) != len) {
dest.setstate(ios_base::badbit);
}
}
return dest;
}
template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
for (int i = 0; i < (int)v.size(); i++) {
os << v[i] << (i + 1 != (int)v.size() ? " " : "");
}
return os;
}
template <typename T>
ostream &operator<<(ostream &os, const set<T> &set_var) {
for (auto itr = set_var.begin(); itr != set_var.end(); itr++) {
os << *itr;
++itr;
if (itr != set_var.end()) os << " ";
itr--;
}
return os;
}
template <typename T>
ostream &operator<<(ostream &os, const unordered_set<T> &set_var) {
for (auto itr = set_var.begin(); itr != set_var.end(); itr++) {
os << *itr;
++itr;
if (itr != set_var.end()) os << " ";
itr--;
}
return os;
}
template <typename T, typename U>
ostream &operator<<(ostream &os, const map<T, U> &map_var) {
for (auto itr = map_var.begin(); itr != map_var.end(); itr++) {
os << itr->first << " -> " << itr->second << "\n";
}
return os;
}
template <typename T, typename U>
ostream &operator<<(ostream &os, const unordered_map<T, U> &map_var) {
for (auto itr = map_var.begin(); itr != map_var.end(); itr++) {
os << itr->first << " -> " << itr->second << "\n";
}
return os;
}
template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &pair_var) {
os << pair_var.first << " " << pair_var.second;
return os;
}
void out() { cout << '\n'; }
template <class T, class... Ts>
void out(const T &a, const Ts &...b) {
cout << a;
(cout << ... << (cout << ' ', b));
cout << '\n';
}
void outf() { cout << '\n'; }
template <class T, class... Ts>
void outf(const T &a, const Ts &...b) {
cout << fixed << setprecision(14) << a;
(cout << ... << (cout << ' ', b));
cout << '\n';
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
for (T &in : v) is >> in;
return is;
}
inline void in(void) { return; }
template <typename First, typename... Rest>
void in(First &first, Rest &...rest) {
cin >> first;
in(rest...);
return;
}
template <typename T>
bool chmax(T &a, const T &b) {
if (a < b) {
a = b;
return true;
}
return false;
}
template <typename T>
bool chmin(T &a, const T &b) {
if (a > b) {
a = b;
return true;
}
return false;
}
vector<lint> dx8 = {1, 1, 0, -1, -1, -1, 0, 1};
vector<lint> dy8 = {0, 1, 1, 1, 0, -1, -1, -1};
vector<lint> dx4 = {1, 0, -1, 0};
vector<lint> dy4 = {0, 1, 0, -1};
#pragma endregion
#line 2 "verify/AizuOnlineJudge/data-structure/balanced-binary-search-tree/ITP2_7_B.test.cpp"
#define PROBLEM "https://onlinejudge.u-aizu.ac.jp/courses/lesson/8/ITP2/7/ITP2_7_B"
#line 1 "data-structure/balanced-binary-search-tree/RedBlackTree.hpp"
class RedBlackTree {
private:
const int RED = 0;
const int BLACK = 1;
struct Node {
Node *p, *left, *right;
int color, key;
};
Node *NIL;
Node *root;
void left_rotate(Node *x) {
assert(x->right);
Node *y = x->right;
x->right = y->left;
if (y->left != NIL) y->left->p = x;
y->p = x->p;
if (x->p == NIL) {
root = y;
} else if (x == x->p->left) {
x->p->left = y;
} else {
x->p->right = y;
}
y->left = x;
x->p = y;
}
void right_rotate(Node *y) {
assert(y->left);
Node *x = y->left;
y->left = x->right;
if (x->right != NIL) x->right->p = y;
x->p = y->p;
if (y->p == NIL) {
root = x;
} else if (y == y->p->left) {
y->p->left = x;
} else {
y->p->right = x;
}
x->right = y;
y->p = x;
}
void insert(Node *z) {
Node *y = NIL;
Node *x = root;
while (x != NIL) {
y = x;
if (z->key < x->key) {
x = x->left;
} else {
x = x->right;
}
}
z->p = y;
if (y == NIL) {
root = z;
} else if (z->key < y->key) {
y->left = z;
} else {
y->right = z;
}
z->left = NIL;
z->right = NIL;
z->color = RED;
insert_fixup(z);
}
void insert_fixup(Node *z) {
while (z->p->color == RED) {
if (z->p == z->p->p->left) {
Node *y = z->p->p->right;
if (y->color == RED) {
z->p->color = BLACK;
y->color = BLACK;
z->p->p->color = RED;
z = z->p->p;
} else if (z == z->p->right) {
z = z->p;
left_rotate(z);
} else if (z == z->p->left) {
z->p->color = BLACK;
z->p->p->color = RED;
right_rotate(z->p->p);
}
} else if (z->p == z->p->p->right) {
Node *y = z->p->p->left;
if (y->color == RED) {
z->p->color = BLACK;
y->color = BLACK;
z->p->p->color = RED;
z = z->p->p;
} else if (z == z->p->left) {
z = z->p;
right_rotate(z);
} else if (z == z->p->right) {
z->p->color = BLACK;
z->p->p->color = RED;
left_rotate(z->p->p);
}
}
}
root->color = BLACK;
}
void transplant(Node *u, Node *v) {
if (u->p == NIL) {
root = v;
} else if (u == u->p->left) {
u->p->left = v;
} else {
u->p->right = v;
}
v->p = u->p;
}
void erase(Node *z) {
Node *x;
Node *y = z;
int y_original_color = y->color;
if (z->left == NIL) {
x = z->right;
transplant(z, z->right);
} else if (z->right == NIL) {
x = z->left;
transplant(z, z->left);
} else {
y = min_element(z->right);
y_original_color = y->color;
x = y->right;
if (y->p == z) {
x->p = y;
} else {
transplant(y, y->right);
y->right = z->right;
y->right->p = y;
}
transplant(z, y);
y->left = z->left;
y->left->p = y;
y->color = z->color;
}
if (y_original_color == BLACK) {
erase_fixup(x);
}
delete z;
}
void erase_fixup(Node *x) {
while (x != root and x->color == BLACK) {
if (x == x->p->left) {
Node *w = x->p->right;
if (w->color == RED) {
w->color = BLACK;
x->p->color = RED;
left_rotate(x->p);
w = w->p->right;
} else if (w->left->color == BLACK and w->right->color == BLACK) {
w->color = RED;
x = x->p;
} else if (w->right->color == BLACK) {
w->left->color = BLACK;
w->color = RED;
right_rotate(w);
w = x->p->right;
} else {
w->color = x->p->color;
x->p->color = BLACK;
w->right->color = BLACK;
left_rotate(x->p);
x = root;
}
} else {
Node *w = x->p->left;
if (w->color == RED) {
w->color = BLACK;
x->p->color = RED;
right_rotate(x->p);
w = w->p->left;
} else if (w->left->color == BLACK and w->right->color == BLACK) {
w->color = RED;
x = x->p;
} else if (w->left->color == BLACK) {
w->right->color = BLACK;
w->color = RED;
left_rotate(w);
w = x->p->left;
} else {
w->color = x->p->color;
x->p->color = BLACK;
w->left->color = BLACK;
right_rotate(x->p);
x = root;
}
}
}
x->color = BLACK;
}
Node *min_element(Node *cur) {
while (cur->left != NIL) cur = cur->left;
return cur;
}
Node *max_element(Node *cur) {
while (cur->right != NIL) cur = cur->right;
return cur;
}
Node *contains(Node *cur, int key) {
while (cur != NIL and cur->key != key) {
if (key < cur->key) {
cur = cur->left;
} else {
cur = cur->right;
}
}
return cur;
}
Node *lower_bound(Node *cur, int key) {
Node *res = NIL;
while (cur != NIL) {
if (cur->key >= key) {
res = cur;
cur = cur->left;
} else {
cur = cur->right;
}
}
return res;
}
public:
RedBlackTree() {
NIL = new Node();
NIL->color = BLACK;
NIL->key = 0;
NIL->p = NIL->left = NIL->right = NIL;
root = NIL;
}
void insert(int value) {
Node *z = new Node();
z->color = RED;
z->key = value;
insert(z);
}
void erase(int value) {
Node *z = contains(root, value);
if (z != NIL) erase(z);
}
bool contains(int value) {
Node *z = contains(root, value);
return z != NIL;
}
int min_element() {
Node *z = min_element(root);
return z->key;
}
int max_element() {
Node *z = max_element(root);
return z->key;
}
int lower_bound(int value) {
Node *z = lower_bound(root, value);
if (z == NIL) return -1;
return z->key;
}
void debug(Node *cur = nullptr) {
if (cur == nullptr) cur = root;
if (cur == NIL) return;
cout << "key: " << cur->key << ", color: " << cur->color << ", P:" << (cur->p == NIL ? "NIL" : to_string(cur->p->key)) << ", L:" << (cur->left == NIL ? "NIL" : to_string(cur->left->key)) << ' ' << ", R:" << (cur->right == NIL ? "NIL" : to_string(cur->right->key)) << endl;
debug(cur->left);
debug(cur->right);
}
};
#line 4 "verify/AizuOnlineJudge/data-structure/balanced-binary-search-tree/ITP2_7_B.test.cpp"
int main() {
cin.tie(0)->sync_with_stdio(0);
RedBlackTree t;
int q;
in(q);
int siz = 0;
rep(i, q) {
int com, x;
in(com, x);
if (com == 0) {
if (!t.contains(x)) {
t.insert(x);
siz++;
}
out(siz);
} else if (com == 1) {
out((t.contains(x) ? 1 : 0));
} else {
if (t.contains(x)) {
t.erase(x);
siz--;
}
}
}
}