This documentation is automatically generated by competitive-verifier/competitive-verifier
#include "../../../../../template/template.hpp"
#define PROBLEM "https://judge.yosupo.jp/problem/static_rectangle_add_rectangle_sum"
#include "../../../../../atcoder/modint.hpp"
using mint = atcoder::modint998244353;
#include "../../../../../data-structure/wavelet-matrix/query/RectangleAddRectangleSum.hpp"
int main() {
cin.tie(0)->sync_with_stdio(0);
int n, q;
in(n, q);
vector<int> x1(n), y1(n), x2(n), y2(n), w(n);
rep(i, n) {
in(x1[i], y1[i], x2[i], y2[i], w[i]);
}
RectangleAddRectangleSum wm(x1, y1, x2, y2, w);
rep(i, q) {
int l, d, r, u;
in(l, d, r, u);
out(wm.rectangle_sum(l, d, r, u).val());
}
}
#line 2 "template/template.hpp"
#pragma region Macros
#include <bits/stdc++.h>
using namespace std;
using lint = long long;
using ull = unsigned long long;
using ld = long double;
using int128 = __int128_t;
#define all(x) (x).begin(), (x).end()
#define uniqv(v) v.erase(unique(all(v)), v.end())
#define OVERLOAD_REP(_1, _2, _3, name, ...) name
#define REP1(i, n) for (auto i = std::decay_t<decltype(n)>{}; (i) != (n); ++(i))
#define REP2(i, l, r) for (auto i = (l); (i) != (r); ++(i))
#define rep(...) OVERLOAD_REP(__VA_ARGS__, REP2, REP1)(__VA_ARGS__)
#define logfixed(x) cout << fixed << setprecision(10) << x << endl;
ostream &operator<<(ostream &dest, __int128_t value) {
ostream::sentry s(dest);
if (s) {
__uint128_t tmp = value < 0 ? -value : value;
char buffer[128];
char *d = end(buffer);
do {
--d;
*d = "0123456789"[tmp % 10];
tmp /= 10;
} while (tmp != 0);
if (value < 0) {
--d;
*d = '-';
}
int len = end(buffer) - d;
if (dest.rdbuf()->sputn(d, len) != len) {
dest.setstate(ios_base::badbit);
}
}
return dest;
}
template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
for (int i = 0; i < (int)v.size(); i++) {
os << v[i] << (i + 1 != (int)v.size() ? " " : "");
}
return os;
}
template <typename T>
ostream &operator<<(ostream &os, const set<T> &set_var) {
for (auto itr = set_var.begin(); itr != set_var.end(); itr++) {
os << *itr;
++itr;
if (itr != set_var.end()) os << " ";
itr--;
}
return os;
}
template <typename T>
ostream &operator<<(ostream &os, const unordered_set<T> &set_var) {
for (auto itr = set_var.begin(); itr != set_var.end(); itr++) {
os << *itr;
++itr;
if (itr != set_var.end()) os << " ";
itr--;
}
return os;
}
template <typename T, typename U>
ostream &operator<<(ostream &os, const map<T, U> &map_var) {
for (auto itr = map_var.begin(); itr != map_var.end(); itr++) {
os << itr->first << " -> " << itr->second << "\n";
}
return os;
}
template <typename T, typename U>
ostream &operator<<(ostream &os, const unordered_map<T, U> &map_var) {
for (auto itr = map_var.begin(); itr != map_var.end(); itr++) {
os << itr->first << " -> " << itr->second << "\n";
}
return os;
}
template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &pair_var) {
os << pair_var.first << " " << pair_var.second;
return os;
}
void out() { cout << '\n'; }
template <class T, class... Ts>
void out(const T &a, const Ts &...b) {
cout << a;
(cout << ... << (cout << ' ', b));
cout << '\n';
}
void outf() { cout << '\n'; }
template <class T, class... Ts>
void outf(const T &a, const Ts &...b) {
cout << fixed << setprecision(14) << a;
(cout << ... << (cout << ' ', b));
cout << '\n';
}
template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
for (T &in : v) is >> in;
return is;
}
inline void in(void) { return; }
template <typename First, typename... Rest>
void in(First &first, Rest &...rest) {
cin >> first;
in(rest...);
return;
}
template <typename T>
bool chmax(T &a, const T &b) {
if (a < b) {
a = b;
return true;
}
return false;
}
template <typename T>
bool chmin(T &a, const T &b) {
if (a > b) {
a = b;
return true;
}
return false;
}
vector<lint> dx8 = {1, 1, 0, -1, -1, -1, 0, 1};
vector<lint> dy8 = {0, 1, 1, 1, 0, -1, -1, -1};
vector<lint> dx4 = {1, 0, -1, 0};
vector<lint> dy4 = {0, 1, 0, -1};
#pragma endregion
#line 2 "verify/LibraryChecker/data-structure/wavelet-matrix/query/RectangleAddRectangleSum.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/static_rectangle_add_rectangle_sum"
#line 1 "atcoder/modint.hpp"
#line 6 "atcoder/modint.hpp"
#include <type_traits>
#ifdef _MSC_VER
#include <intrin.h>
#endif
#line 1 "atcoder/internal_math.hpp"
#line 5 "atcoder/internal_math.hpp"
#ifdef _MSC_VER
#include <intrin.h>
#endif
namespace atcoder {
namespace internal {
// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
x %= m;
if (x < 0) x += m;
return x;
}
// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
unsigned int _m;
unsigned long long im;
// @param m `1 <= m`
explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}
// @return m
unsigned int umod() const { return _m; }
// @param a `0 <= a < m`
// @param b `0 <= b < m`
// @return `a * b % m`
unsigned int mul(unsigned int a, unsigned int b) const {
// [1] m = 1
// a = b = im = 0, so okay
// [2] m >= 2
// im = ceil(2^64 / m)
// -> im * m = 2^64 + r (0 <= r < m)
// let z = a*b = c*m + d (0 <= c, d < m)
// a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
// c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
// ((ab * im) >> 64) == c or c + 1
unsigned long long z = a;
z *= b;
#ifdef _MSC_VER
unsigned long long x;
_umul128(z, im, &x);
#else
unsigned long long x =
(unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
unsigned long long y = x * _m;
return (unsigned int)(z - y + (z < y ? _m : 0));
}
};
// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
if (m == 1) return 0;
unsigned int _m = (unsigned int)(m);
unsigned long long r = 1;
unsigned long long y = safe_mod(x, m);
while (n) {
if (n & 1) r = (r * y) % _m;
y = (y * y) % _m;
n >>= 1;
}
return r;
}
// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
if (n <= 1) return false;
if (n == 2 || n == 7 || n == 61) return true;
if (n % 2 == 0) return false;
long long d = n - 1;
while (d % 2 == 0) d /= 2;
constexpr long long bases[3] = {2, 7, 61};
for (long long a : bases) {
long long t = d;
long long y = pow_mod_constexpr(a, t, n);
while (t != n - 1 && y != 1 && y != n - 1) {
y = y * y % n;
t <<= 1;
}
if (y != n - 1 && t % 2 == 0) {
return false;
}
}
return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);
// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
a = safe_mod(a, b);
if (a == 0) return {b, 0};
// Contracts:
// [1] s - m0 * a = 0 (mod b)
// [2] t - m1 * a = 0 (mod b)
// [3] s * |m1| + t * |m0| <= b
long long s = b, t = a;
long long m0 = 0, m1 = 1;
while (t) {
long long u = s / t;
s -= t * u;
m0 -= m1 * u; // |m1 * u| <= |m1| * s <= b
// [3]:
// (s - t * u) * |m1| + t * |m0 - m1 * u|
// <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
// = s * |m1| + t * |m0| <= b
auto tmp = s;
s = t;
t = tmp;
tmp = m0;
m0 = m1;
m1 = tmp;
}
// by [3]: |m0| <= b/g
// by g != b: |m0| < b/g
if (m0 < 0) m0 += b / s;
return {s, m0};
}
// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
if (m == 2) return 1;
if (m == 167772161) return 3;
if (m == 469762049) return 3;
if (m == 754974721) return 11;
if (m == 998244353) return 3;
int divs[20] = {};
divs[0] = 2;
int cnt = 1;
int x = (m - 1) / 2;
while (x % 2 == 0) x /= 2;
for (int i = 3; (long long)(i)*i <= x; i += 2) {
if (x % i == 0) {
divs[cnt++] = i;
while (x % i == 0) {
x /= i;
}
}
}
if (x > 1) {
divs[cnt++] = x;
}
for (int g = 2;; g++) {
bool ok = true;
for (int i = 0; i < cnt; i++) {
if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
ok = false;
break;
}
}
if (ok) return g;
}
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);
// @param n `n < 2^32`
// @param m `1 <= m < 2^32`
// @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64)
unsigned long long floor_sum_unsigned(unsigned long long n,
unsigned long long m,
unsigned long long a,
unsigned long long b) {
unsigned long long ans = 0;
while (true) {
if (a >= m) {
ans += n * (n - 1) / 2 * (a / m);
a %= m;
}
if (b >= m) {
ans += n * (b / m);
b %= m;
}
unsigned long long y_max = a * n + b;
if (y_max < m) break;
// y_max < m * (n + 1)
// floor(y_max / m) <= n
n = (unsigned long long)(y_max / m);
b = (unsigned long long)(y_max % m);
std::swap(m, a);
}
return ans;
}
} // namespace internal
} // namespace atcoder
#line 1 "atcoder/internal_type_traits.hpp"
#line 7 "atcoder/internal_type_traits.hpp"
namespace atcoder {
namespace internal {
#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value ||
std::is_same<T, __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int128 =
typename std::conditional<std::is_same<T, __uint128_t>::value ||
std::is_same<T, unsigned __int128>::value,
std::true_type,
std::false_type>::type;
template <class T>
using make_unsigned_int128 =
typename std::conditional<std::is_same<T, __int128_t>::value,
__uint128_t,
unsigned __int128>;
template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
is_signed_int128<T>::value ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
std::is_signed<T>::value) ||
is_signed_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<(is_integral<T>::value &&
std::is_unsigned<T>::value) ||
is_unsigned_int128<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<
is_signed_int128<T>::value,
make_unsigned_int128<T>,
typename std::conditional<std::is_signed<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type>::type;
#else
template <class T> using is_integral = typename std::is_integral<T>;
template <class T>
using is_signed_int =
typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using is_unsigned_int =
typename std::conditional<is_integral<T>::value &&
std::is_unsigned<T>::value,
std::true_type,
std::false_type>::type;
template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
std::make_unsigned<T>,
std::common_type<T>>::type;
#endif
template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;
template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;
template <class T> using to_unsigned_t = typename to_unsigned<T>::type;
} // namespace internal
} // namespace atcoder
#line 14 "atcoder/modint.hpp"
namespace atcoder {
namespace internal {
struct modint_base {};
struct static_modint_base : modint_base {};
template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;
} // namespace internal
template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
using mint = static_modint;
public:
static constexpr int mod() { return m; }
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
static_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
static_modint(T v) {
long long x = (long long)(v % (long long)(umod()));
if (x < 0) x += umod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
static_modint(T v) {
_v = (unsigned int)(v % umod());
}
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v -= rhs._v;
if (_v >= umod()) _v += umod();
return *this;
}
mint& operator*=(const mint& rhs) {
unsigned long long z = _v;
z *= rhs._v;
_v = (unsigned int)(z % umod());
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
if (prime) {
assert(_v);
return pow(umod() - 2);
} else {
auto eg = internal::inv_gcd(_v, m);
assert(eg.first == 1);
return eg.second;
}
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static constexpr unsigned int umod() { return m; }
static constexpr bool prime = internal::is_prime<m>;
};
template <int id> struct dynamic_modint : internal::modint_base {
using mint = dynamic_modint;
public:
static int mod() { return (int)(bt.umod()); }
static void set_mod(int m) {
assert(1 <= m);
bt = internal::barrett(m);
}
static mint raw(int v) {
mint x;
x._v = v;
return x;
}
dynamic_modint() : _v(0) {}
template <class T, internal::is_signed_int_t<T>* = nullptr>
dynamic_modint(T v) {
long long x = (long long)(v % (long long)(mod()));
if (x < 0) x += mod();
_v = (unsigned int)(x);
}
template <class T, internal::is_unsigned_int_t<T>* = nullptr>
dynamic_modint(T v) {
_v = (unsigned int)(v % mod());
}
unsigned int val() const { return _v; }
mint& operator++() {
_v++;
if (_v == umod()) _v = 0;
return *this;
}
mint& operator--() {
if (_v == 0) _v = umod();
_v--;
return *this;
}
mint operator++(int) {
mint result = *this;
++*this;
return result;
}
mint operator--(int) {
mint result = *this;
--*this;
return result;
}
mint& operator+=(const mint& rhs) {
_v += rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator-=(const mint& rhs) {
_v += mod() - rhs._v;
if (_v >= umod()) _v -= umod();
return *this;
}
mint& operator*=(const mint& rhs) {
_v = bt.mul(_v, rhs._v);
return *this;
}
mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }
mint operator+() const { return *this; }
mint operator-() const { return mint() - *this; }
mint pow(long long n) const {
assert(0 <= n);
mint x = *this, r = 1;
while (n) {
if (n & 1) r *= x;
x *= x;
n >>= 1;
}
return r;
}
mint inv() const {
auto eg = internal::inv_gcd(_v, mod());
assert(eg.first == 1);
return eg.second;
}
friend mint operator+(const mint& lhs, const mint& rhs) {
return mint(lhs) += rhs;
}
friend mint operator-(const mint& lhs, const mint& rhs) {
return mint(lhs) -= rhs;
}
friend mint operator*(const mint& lhs, const mint& rhs) {
return mint(lhs) *= rhs;
}
friend mint operator/(const mint& lhs, const mint& rhs) {
return mint(lhs) /= rhs;
}
friend bool operator==(const mint& lhs, const mint& rhs) {
return lhs._v == rhs._v;
}
friend bool operator!=(const mint& lhs, const mint& rhs) {
return lhs._v != rhs._v;
}
private:
unsigned int _v;
static internal::barrett bt;
static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt(998244353);
using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;
namespace internal {
template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;
template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;
template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};
template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;
} // namespace internal
} // namespace atcoder
#line 4 "verify/LibraryChecker/data-structure/wavelet-matrix/query/RectangleAddRectangleSum.test.cpp"
using mint = atcoder::modint998244353;
#line 1 "data-structure/wavelet-matrix/query/RectangleAddRectangleSum.hpp"
using S = tuple<mint, mint, mint, mint>;
S op(const S &a, const S &b) {
auto &[a1, a2, a3, a4] = a;
auto &[b1, b2, b3, b4] = b;
return {a1 + b1, a2 + b2, a3 + b3, a4 + b4};
}
void print(const S &a) {
auto &[a1, a2, a3, a4] = a;
out(a1.val(), a2.val(), a3.val(), a4.val());
}
S e() {
return {0, 0, 0, 0};
}
S operator+(const S &a, const S &b) {
return op(a, b);
}
S operator-(const S &a, const S &b) {
auto &[a1, a2, a3, a4] = a;
auto &[b1, b2, b3, b4] = b;
return {a1 - b1, a2 - b2, a3 - b3, a4 - b4};
}
struct BitVector {
unsigned sz;
unsigned blocksize;
vector<unsigned long long> bit;
vector<unsigned> sum;
vector<S> srsum;
BitVector() {}
BitVector(unsigned siz) {
sz = siz;
blocksize = (sz + 63) >> 6;
bit.assign(blocksize, 0ULL);
sum.assign(blocksize, 0U);
srsum.resize(sz);
}
inline void set(int k) { bit[k >> 6] |= 1ULL << (k & 63ULL); }
inline void build() {
sum[0] = 0ULL;
for (int i = 1; i < blocksize; i++) {
sum[i] = sum[i - 1] + __builtin_popcountll(bit[i - 1]);
}
}
inline bool access(unsigned k) {
return (bool((bit[k >> 6] >> (k & 63)) & 1));
}
inline int rank(int k) {
return (sum[k >> 6] + __builtin_popcountll(bit[k >> 6] & ((1ULL << (k & 63)) - 1)));
}
inline void srsum_set(vector<S> &v) {
for (int i = 0; i < sz - 1; i++) {
srsum[i + 1] = srsum[i] + v[i];
}
}
inline S rank_srsum(int l, int r) {
return srsum[r] - srsum[l];
}
inline S rank_srsum(int r) {
return srsum[r];
}
};
class WaveletMatrix {
private:
unsigned n;
unsigned bitsize, logn;
vector<BitVector> b;
vector<unsigned> zero;
vector<int> cmp;
vector<int> px;
int MI, MA;
inline unsigned compress(const int &x) {
return lower_bound(cmp.begin(), cmp.end(), x) - begin(cmp);
}
public:
// コンストラクタ
WaveletMatrix() {}
WaveletMatrix(vector<int> x, vector<int> y, vector<S> w) {
n = x.size();
px.resize(n);
vector<tuple<int, int, S>> v(n);
for (int i = 0; i < n; i++) {
v[i] = {x[i], y[i], w[i]};
}
sort(v.begin(), v.end(), [](const tuple<int, int, S> &l, const tuple<int, int, S> &r) {
return std::get<0>(l) < std::get<0>(r);
});
for (int i = 0; i < n; i++) {
px[i] = std::get<0>(v[i]);
y[i] = std::get<1>(v[i]);
w[i] = std::get<2>(v[i]);
}
vector<unsigned> compressed(n);
cmp.resize(y.size());
cmp = y;
sort(cmp.begin(), cmp.end());
cmp.erase(unique(cmp.begin(), cmp.end()), cmp.end());
vector<unsigned> tmpc(n);
vector<S> tmp(n);
unsigned size_mx = y.size();
for (unsigned i = 0; i < n; i++) {
compressed[i] = distance(cmp.begin(), lower_bound(cmp.begin(), cmp.end(), y[i]));
}
bitsize = bit_width(cmp.size());
b.resize(bitsize + 1);
zero.resize(bitsize, 0);
int cur = 0;
for (unsigned i = 0; i < bitsize; i++) {
b[i] = BitVector(n + 1);
b[i].srsum_set(w);
cur = 0;
for (unsigned j = 0; j < n; j++) {
if (compressed[j] & (1U << (bitsize - i - 1))) {
b[i].set(j);
} else {
zero[i]++;
tmpc[cur] = compressed[j];
tmp[cur] = w[j];
cur++;
}
}
b[i].build();
for (int j = 0; j < n; j++) {
if (compressed[j] & (1U << (bitsize - i - 1))) {
tmpc[cur] = compressed[j];
tmp[cur] = w[j];
cur++;
}
}
swap(tmpc, compressed);
swap(tmp, w);
}
b[bitsize] = BitVector(n + 1);
b[bitsize].srsum_set(w);
}
// v[l,r) の中で[mink,maxk)に入る値の総和を返す
S range_sum(int vl, int vr, int mink, int maxk) {
int D = mink;
int U = compress(maxk);
S res = e();
auto dfs = [&](auto &rec, int d, int L, int R, int A, int B) -> void {
if (U <= A or B <= D) return;
if (D <= A and B <= U) {
res = op(res, b[d].rank_srsum(L, R));
return;
}
if (d == bitsize) {
if (D <= A and A < U) {
res = op(res, b[bitsize].rank_srsum(L, R));
}
return;
}
int C = (A + B) >> 1;
int rank0_l = L - b[d].rank(L);
int rank0_r = R - b[d].rank(R);
int rank1_l = b[d].rank(L) + zero[d];
int rank1_r = b[d].rank(R) + zero[d];
rec(rec, d + 1, rank0_l, rank0_r, A, C);
rec(rec, d + 1, rank1_l, rank1_r, C, B);
};
dfs(dfs, 0, vl, vr, 0, 1 << bitsize);
return res;
}
// x座標が[l,r) かつy座標が[d,u) に入る点の総積を返す
S rectangle_sum(int l, int r, int d, int u) {
unsigned cr = distance(px.begin(), lower_bound(px.begin(), px.end(), r));
return range_sum(l, cr, d, u);
}
};
class RectangleAddRectangleSum {
private:
vector<int> x, y;
vector<S> z;
WaveletMatrix wm;
public:
RectangleAddRectangleSum(const vector<int> &x1, const vector<int> &y1, const vector<int> &x2, const vector<int> &y2, const vector<int> &weight) {
int n = x1.size();
x.resize(n * 4);
y.resize(n * 4);
z.resize(n * 4);
for (int i = 0; i < n; i++) {
int xl = x1[i];
int yl = y1[i];
int xr = x2[i];
int yr = y2[i];
mint w = weight[i];
x[i * 4] = xl;
y[i * 4] = yl;
z[i * 4] = {w, w * -yl, w * -xl, w * +xl * yl};
x[i * 4 + 1] = xl;
y[i * 4 + 1] = yr;
z[i * 4 + 1] = {-w, w * +yr, w * xl, w * -xl * yr};
x[i * 4 + 2] = xr;
y[i * 4 + 2] = yl;
z[i * 4 + 2] = {-w, w * yl, w * xr, w * -xr * yl};
x[i * 4 + 3] = xr;
y[i * 4 + 3] = yr;
z[i * 4 + 3] = {w, w * -yr, w * -xr, w * xr * yr};
}
wm = WaveletMatrix(x, y, z);
}
mint rectangle_sum(int xl, int yl, int xr, int yr) {
mint resp = 0;
mint resn = 0;
{
auto [a, b, c, d] = wm.rectangle_sum(0, xl, 0, yl);
resp += a * xl * yl;
resp += b * xl;
resp += c * yl;
resp += d;
}
{
auto [a, b, c, d] = wm.rectangle_sum(0, xl, 0, yr);
resn += a * xl * yr;
resn += b * xl;
resn += c * yr;
resn += d;
}
{
auto [a, b, c, d] = wm.rectangle_sum(0, xr, 0, yl);
resn += a * xr * yl;
resn += b * xr;
resn += c * yl;
resn += d;
}
{
auto [a, b, c, d] = wm.rectangle_sum(0, xr, 0, yr);
resp += a * xr * yr;
resp += b * xr;
resp += c * yr;
resp += d;
}
return resp - resn;
}
};
#line 6 "verify/LibraryChecker/data-structure/wavelet-matrix/query/RectangleAddRectangleSum.test.cpp"
int main() {
cin.tie(0)->sync_with_stdio(0);
int n, q;
in(n, q);
vector<int> x1(n), y1(n), x2(n), y2(n), w(n);
rep(i, n) {
in(x1[i], y1[i], x2[i], y2[i], w[i]);
}
RectangleAddRectangleSum wm(x1, y1, x2, y2, w);
rep(i, q) {
int l, d, r, u;
in(l, d, r, u);
out(wm.rectangle_sum(l, d, r, u).val());
}
}