lmori's Library

This documentation is automatically generated by competitive-verifier/competitive-verifier

View the Project on GitHub lmorinn/library

:heavy_check_mark: verify/LibraryChecker/data-structure/wavelet-matrix/query/RectangleAddRectangleSum.test.cpp

Depends on

Code

#include "../../../../../template/template.hpp"
#define PROBLEM "https://judge.yosupo.jp/problem/static_rectangle_add_rectangle_sum"
#include "../../../../../atcoder/modint.hpp"
using mint = atcoder::modint998244353;
#include "../../../../../data-structure/wavelet-matrix/query/RectangleAddRectangleSum.hpp"
int main() {
    cin.tie(0)->sync_with_stdio(0);
    int n, q;
    in(n, q);
    vector<int> x1(n), y1(n), x2(n), y2(n), w(n);
    rep(i, n) {
        in(x1[i], y1[i], x2[i], y2[i], w[i]);
    }

    RectangleAddRectangleSum wm(x1, y1, x2, y2, w);

    rep(i, q) {
        int l, d, r, u;
        in(l, d, r, u);
        out(wm.rectangle_sum(l, d, r, u).val());
    }
}
#line 2 "template/template.hpp"
#pragma region Macros
#include <bits/stdc++.h>
using namespace std;
using lint = long long;
using ull = unsigned long long;
using ld = long double;
using int128 = __int128_t;
#define all(x) (x).begin(), (x).end()
#define uniqv(v) v.erase(unique(all(v)), v.end())
#define OVERLOAD_REP(_1, _2, _3, name, ...) name
#define REP1(i, n) for (auto i = std::decay_t<decltype(n)>{}; (i) != (n); ++(i))
#define REP2(i, l, r) for (auto i = (l); (i) != (r); ++(i))
#define rep(...) OVERLOAD_REP(__VA_ARGS__, REP2, REP1)(__VA_ARGS__)
#define logfixed(x) cout << fixed << setprecision(10) << x << endl;

ostream &operator<<(ostream &dest, __int128_t value) {
  ostream::sentry s(dest);
  if (s) {
    __uint128_t tmp = value < 0 ? -value : value;
    char buffer[128];
    char *d = end(buffer);
    do {
      --d;
      *d = "0123456789"[tmp % 10];
      tmp /= 10;
    } while (tmp != 0);
    if (value < 0) {
      --d;
      *d = '-';
    }
    int len = end(buffer) - d;
    if (dest.rdbuf()->sputn(d, len) != len) {
      dest.setstate(ios_base::badbit);
    }
  }
  return dest;
}

template <typename T>
ostream &operator<<(ostream &os, const vector<T> &v) {
  for (int i = 0; i < (int)v.size(); i++) {
    os << v[i] << (i + 1 != (int)v.size() ? " " : "");
  }
  return os;
}

template <typename T>
ostream &operator<<(ostream &os, const set<T> &set_var) {
  for (auto itr = set_var.begin(); itr != set_var.end(); itr++) {
    os << *itr;
    ++itr;
    if (itr != set_var.end()) os << " ";
    itr--;
  }
  return os;
}

template <typename T>
ostream &operator<<(ostream &os, const unordered_set<T> &set_var) {
  for (auto itr = set_var.begin(); itr != set_var.end(); itr++) {
    os << *itr;
    ++itr;
    if (itr != set_var.end()) os << " ";
    itr--;
  }
  return os;
}

template <typename T, typename U>
ostream &operator<<(ostream &os, const map<T, U> &map_var) {
  for (auto itr = map_var.begin(); itr != map_var.end(); itr++) {
    os << itr->first << " -> " << itr->second << "\n";
  }
  return os;
}

template <typename T, typename U>
ostream &operator<<(ostream &os, const unordered_map<T, U> &map_var) {
  for (auto itr = map_var.begin(); itr != map_var.end(); itr++) {
    os << itr->first << " -> " << itr->second << "\n";
  }
  return os;
}

template <typename T, typename U>
ostream &operator<<(ostream &os, const pair<T, U> &pair_var) {
  os << pair_var.first << " " << pair_var.second;
  return os;
}

void out() { cout << '\n'; }
template <class T, class... Ts>
void out(const T &a, const Ts &...b) {
  cout << a;
  (cout << ... << (cout << ' ', b));
  cout << '\n';
}

void outf() { cout << '\n'; }
template <class T, class... Ts>
void outf(const T &a, const Ts &...b) {
  cout << fixed << setprecision(14) << a;
  (cout << ... << (cout << ' ', b));
  cout << '\n';
}

template <typename T>
istream &operator>>(istream &is, vector<T> &v) {
  for (T &in : v) is >> in;
  return is;
}

inline void in(void) { return; }
template <typename First, typename... Rest>
void in(First &first, Rest &...rest) {
  cin >> first;
  in(rest...);
  return;
}

template <typename T>
bool chmax(T &a, const T &b) {
  if (a < b) {
    a = b;
    return true;
  }
  return false;
}
template <typename T>
bool chmin(T &a, const T &b) {
  if (a > b) {
    a = b;
    return true;
  }
  return false;
}

vector<lint> dx8 = {1, 1, 0, -1, -1, -1, 0, 1};
vector<lint> dy8 = {0, 1, 1, 1, 0, -1, -1, -1};
vector<lint> dx4 = {1, 0, -1, 0};
vector<lint> dy4 = {0, 1, 0, -1};

#pragma endregion
#line 2 "verify/LibraryChecker/data-structure/wavelet-matrix/query/RectangleAddRectangleSum.test.cpp"
#define PROBLEM "https://judge.yosupo.jp/problem/static_rectangle_add_rectangle_sum"
#line 1 "atcoder/modint.hpp"



#line 6 "atcoder/modint.hpp"
#include <type_traits>

#ifdef _MSC_VER
#include <intrin.h>
#endif

#line 1 "atcoder/internal_math.hpp"



#line 5 "atcoder/internal_math.hpp"

#ifdef _MSC_VER
#include <intrin.h>
#endif

namespace atcoder {

namespace internal {

// @param m `1 <= m`
// @return x mod m
constexpr long long safe_mod(long long x, long long m) {
    x %= m;
    if (x < 0) x += m;
    return x;
}

// Fast modular multiplication by barrett reduction
// Reference: https://en.wikipedia.org/wiki/Barrett_reduction
// NOTE: reconsider after Ice Lake
struct barrett {
    unsigned int _m;
    unsigned long long im;

    // @param m `1 <= m`
    explicit barrett(unsigned int m) : _m(m), im((unsigned long long)(-1) / m + 1) {}

    // @return m
    unsigned int umod() const { return _m; }

    // @param a `0 <= a < m`
    // @param b `0 <= b < m`
    // @return `a * b % m`
    unsigned int mul(unsigned int a, unsigned int b) const {
        // [1] m = 1
        // a = b = im = 0, so okay

        // [2] m >= 2
        // im = ceil(2^64 / m)
        // -> im * m = 2^64 + r (0 <= r < m)
        // let z = a*b = c*m + d (0 <= c, d < m)
        // a*b * im = (c*m + d) * im = c*(im*m) + d*im = c*2^64 + c*r + d*im
        // c*r + d*im < m * m + m * im < m * m + 2^64 + m <= 2^64 + m * (m + 1) < 2^64 * 2
        // ((ab * im) >> 64) == c or c + 1
        unsigned long long z = a;
        z *= b;
#ifdef _MSC_VER
        unsigned long long x;
        _umul128(z, im, &x);
#else
        unsigned long long x =
            (unsigned long long)(((unsigned __int128)(z)*im) >> 64);
#endif
        unsigned long long y = x * _m;
        return (unsigned int)(z - y + (z < y ? _m : 0));
    }
};

// @param n `0 <= n`
// @param m `1 <= m`
// @return `(x ** n) % m`
constexpr long long pow_mod_constexpr(long long x, long long n, int m) {
    if (m == 1) return 0;
    unsigned int _m = (unsigned int)(m);
    unsigned long long r = 1;
    unsigned long long y = safe_mod(x, m);
    while (n) {
        if (n & 1) r = (r * y) % _m;
        y = (y * y) % _m;
        n >>= 1;
    }
    return r;
}

// Reference:
// M. Forisek and J. Jancina,
// Fast Primality Testing for Integers That Fit into a Machine Word
// @param n `0 <= n`
constexpr bool is_prime_constexpr(int n) {
    if (n <= 1) return false;
    if (n == 2 || n == 7 || n == 61) return true;
    if (n % 2 == 0) return false;
    long long d = n - 1;
    while (d % 2 == 0) d /= 2;
    constexpr long long bases[3] = {2, 7, 61};
    for (long long a : bases) {
        long long t = d;
        long long y = pow_mod_constexpr(a, t, n);
        while (t != n - 1 && y != 1 && y != n - 1) {
            y = y * y % n;
            t <<= 1;
        }
        if (y != n - 1 && t % 2 == 0) {
            return false;
        }
    }
    return true;
}
template <int n> constexpr bool is_prime = is_prime_constexpr(n);

// @param b `1 <= b`
// @return pair(g, x) s.t. g = gcd(a, b), xa = g (mod b), 0 <= x < b/g
constexpr std::pair<long long, long long> inv_gcd(long long a, long long b) {
    a = safe_mod(a, b);
    if (a == 0) return {b, 0};

    // Contracts:
    // [1] s - m0 * a = 0 (mod b)
    // [2] t - m1 * a = 0 (mod b)
    // [3] s * |m1| + t * |m0| <= b
    long long s = b, t = a;
    long long m0 = 0, m1 = 1;

    while (t) {
        long long u = s / t;
        s -= t * u;
        m0 -= m1 * u;  // |m1 * u| <= |m1| * s <= b

        // [3]:
        // (s - t * u) * |m1| + t * |m0 - m1 * u|
        // <= s * |m1| - t * u * |m1| + t * (|m0| + |m1| * u)
        // = s * |m1| + t * |m0| <= b

        auto tmp = s;
        s = t;
        t = tmp;
        tmp = m0;
        m0 = m1;
        m1 = tmp;
    }
    // by [3]: |m0| <= b/g
    // by g != b: |m0| < b/g
    if (m0 < 0) m0 += b / s;
    return {s, m0};
}

// Compile time primitive root
// @param m must be prime
// @return primitive root (and minimum in now)
constexpr int primitive_root_constexpr(int m) {
    if (m == 2) return 1;
    if (m == 167772161) return 3;
    if (m == 469762049) return 3;
    if (m == 754974721) return 11;
    if (m == 998244353) return 3;
    int divs[20] = {};
    divs[0] = 2;
    int cnt = 1;
    int x = (m - 1) / 2;
    while (x % 2 == 0) x /= 2;
    for (int i = 3; (long long)(i)*i <= x; i += 2) {
        if (x % i == 0) {
            divs[cnt++] = i;
            while (x % i == 0) {
                x /= i;
            }
        }
    }
    if (x > 1) {
        divs[cnt++] = x;
    }
    for (int g = 2;; g++) {
        bool ok = true;
        for (int i = 0; i < cnt; i++) {
            if (pow_mod_constexpr(g, (m - 1) / divs[i], m) == 1) {
                ok = false;
                break;
            }
        }
        if (ok) return g;
    }
}
template <int m> constexpr int primitive_root = primitive_root_constexpr(m);

// @param n `n < 2^32`
// @param m `1 <= m < 2^32`
// @return sum_{i=0}^{n-1} floor((ai + b) / m) (mod 2^64)
unsigned long long floor_sum_unsigned(unsigned long long n,
                                      unsigned long long m,
                                      unsigned long long a,
                                      unsigned long long b) {
    unsigned long long ans = 0;
    while (true) {
        if (a >= m) {
            ans += n * (n - 1) / 2 * (a / m);
            a %= m;
        }
        if (b >= m) {
            ans += n * (b / m);
            b %= m;
        }

        unsigned long long y_max = a * n + b;
        if (y_max < m) break;
        // y_max < m * (n + 1)
        // floor(y_max / m) <= n
        n = (unsigned long long)(y_max / m);
        b = (unsigned long long)(y_max % m);
        std::swap(m, a);
    }
    return ans;
}

}  // namespace internal

}  // namespace atcoder


#line 1 "atcoder/internal_type_traits.hpp"



#line 7 "atcoder/internal_type_traits.hpp"

namespace atcoder {

namespace internal {

#ifndef _MSC_VER
template <class T>
using is_signed_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value ||
                                  std::is_same<T, __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int128 =
    typename std::conditional<std::is_same<T, __uint128_t>::value ||
                                  std::is_same<T, unsigned __int128>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using make_unsigned_int128 =
    typename std::conditional<std::is_same<T, __int128_t>::value,
                              __uint128_t,
                              unsigned __int128>;

template <class T>
using is_integral = typename std::conditional<std::is_integral<T>::value ||
                                                  is_signed_int128<T>::value ||
                                                  is_unsigned_int128<T>::value,
                                              std::true_type,
                                              std::false_type>::type;

template <class T>
using is_signed_int = typename std::conditional<(is_integral<T>::value &&
                                                 std::is_signed<T>::value) ||
                                                    is_signed_int128<T>::value,
                                                std::true_type,
                                                std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<(is_integral<T>::value &&
                               std::is_unsigned<T>::value) ||
                                  is_unsigned_int128<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<
    is_signed_int128<T>::value,
    make_unsigned_int128<T>,
    typename std::conditional<std::is_signed<T>::value,
                              std::make_unsigned<T>,
                              std::common_type<T>>::type>::type;

#else

template <class T> using is_integral = typename std::is_integral<T>;

template <class T>
using is_signed_int =
    typename std::conditional<is_integral<T>::value && std::is_signed<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using is_unsigned_int =
    typename std::conditional<is_integral<T>::value &&
                                  std::is_unsigned<T>::value,
                              std::true_type,
                              std::false_type>::type;

template <class T>
using to_unsigned = typename std::conditional<is_signed_int<T>::value,
                                              std::make_unsigned<T>,
                                              std::common_type<T>>::type;

#endif

template <class T>
using is_signed_int_t = std::enable_if_t<is_signed_int<T>::value>;

template <class T>
using is_unsigned_int_t = std::enable_if_t<is_unsigned_int<T>::value>;

template <class T> using to_unsigned_t = typename to_unsigned<T>::type;

}  // namespace internal

}  // namespace atcoder


#line 14 "atcoder/modint.hpp"

namespace atcoder {

namespace internal {

struct modint_base {};
struct static_modint_base : modint_base {};

template <class T> using is_modint = std::is_base_of<modint_base, T>;
template <class T> using is_modint_t = std::enable_if_t<is_modint<T>::value>;

}  // namespace internal

template <int m, std::enable_if_t<(1 <= m)>* = nullptr>
struct static_modint : internal::static_modint_base {
    using mint = static_modint;

  public:
    static constexpr int mod() { return m; }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    static_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    static_modint(T v) {
        long long x = (long long)(v % (long long)(umod()));
        if (x < 0) x += umod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    static_modint(T v) {
        _v = (unsigned int)(v % umod());
    }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v -= rhs._v;
        if (_v >= umod()) _v += umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        unsigned long long z = _v;
        z *= rhs._v;
        _v = (unsigned int)(z % umod());
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        if (prime) {
            assert(_v);
            return pow(umod() - 2);
        } else {
            auto eg = internal::inv_gcd(_v, m);
            assert(eg.first == 1);
            return eg.second;
        }
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static constexpr unsigned int umod() { return m; }
    static constexpr bool prime = internal::is_prime<m>;
};

template <int id> struct dynamic_modint : internal::modint_base {
    using mint = dynamic_modint;

  public:
    static int mod() { return (int)(bt.umod()); }
    static void set_mod(int m) {
        assert(1 <= m);
        bt = internal::barrett(m);
    }
    static mint raw(int v) {
        mint x;
        x._v = v;
        return x;
    }

    dynamic_modint() : _v(0) {}
    template <class T, internal::is_signed_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        long long x = (long long)(v % (long long)(mod()));
        if (x < 0) x += mod();
        _v = (unsigned int)(x);
    }
    template <class T, internal::is_unsigned_int_t<T>* = nullptr>
    dynamic_modint(T v) {
        _v = (unsigned int)(v % mod());
    }

    unsigned int val() const { return _v; }

    mint& operator++() {
        _v++;
        if (_v == umod()) _v = 0;
        return *this;
    }
    mint& operator--() {
        if (_v == 0) _v = umod();
        _v--;
        return *this;
    }
    mint operator++(int) {
        mint result = *this;
        ++*this;
        return result;
    }
    mint operator--(int) {
        mint result = *this;
        --*this;
        return result;
    }

    mint& operator+=(const mint& rhs) {
        _v += rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator-=(const mint& rhs) {
        _v += mod() - rhs._v;
        if (_v >= umod()) _v -= umod();
        return *this;
    }
    mint& operator*=(const mint& rhs) {
        _v = bt.mul(_v, rhs._v);
        return *this;
    }
    mint& operator/=(const mint& rhs) { return *this = *this * rhs.inv(); }

    mint operator+() const { return *this; }
    mint operator-() const { return mint() - *this; }

    mint pow(long long n) const {
        assert(0 <= n);
        mint x = *this, r = 1;
        while (n) {
            if (n & 1) r *= x;
            x *= x;
            n >>= 1;
        }
        return r;
    }
    mint inv() const {
        auto eg = internal::inv_gcd(_v, mod());
        assert(eg.first == 1);
        return eg.second;
    }

    friend mint operator+(const mint& lhs, const mint& rhs) {
        return mint(lhs) += rhs;
    }
    friend mint operator-(const mint& lhs, const mint& rhs) {
        return mint(lhs) -= rhs;
    }
    friend mint operator*(const mint& lhs, const mint& rhs) {
        return mint(lhs) *= rhs;
    }
    friend mint operator/(const mint& lhs, const mint& rhs) {
        return mint(lhs) /= rhs;
    }
    friend bool operator==(const mint& lhs, const mint& rhs) {
        return lhs._v == rhs._v;
    }
    friend bool operator!=(const mint& lhs, const mint& rhs) {
        return lhs._v != rhs._v;
    }

  private:
    unsigned int _v;
    static internal::barrett bt;
    static unsigned int umod() { return bt.umod(); }
};
template <int id> internal::barrett dynamic_modint<id>::bt(998244353);

using modint998244353 = static_modint<998244353>;
using modint1000000007 = static_modint<1000000007>;
using modint = dynamic_modint<-1>;

namespace internal {

template <class T>
using is_static_modint = std::is_base_of<internal::static_modint_base, T>;

template <class T>
using is_static_modint_t = std::enable_if_t<is_static_modint<T>::value>;

template <class> struct is_dynamic_modint : public std::false_type {};
template <int id>
struct is_dynamic_modint<dynamic_modint<id>> : public std::true_type {};

template <class T>
using is_dynamic_modint_t = std::enable_if_t<is_dynamic_modint<T>::value>;

}  // namespace internal

}  // namespace atcoder


#line 4 "verify/LibraryChecker/data-structure/wavelet-matrix/query/RectangleAddRectangleSum.test.cpp"
using mint = atcoder::modint998244353;
#line 1 "data-structure/wavelet-matrix/query/RectangleAddRectangleSum.hpp"

using S = tuple<mint, mint, mint, mint>;

S op(const S &a, const S &b) {
  auto &[a1, a2, a3, a4] = a;
  auto &[b1, b2, b3, b4] = b;
  return {a1 + b1, a2 + b2, a3 + b3, a4 + b4};
}

void print(const S &a) {
  auto &[a1, a2, a3, a4] = a;
  out(a1.val(), a2.val(), a3.val(), a4.val());
}

S e() {
  return {0, 0, 0, 0};
}

S operator+(const S &a, const S &b) {
  return op(a, b);
}

S operator-(const S &a, const S &b) {
  auto &[a1, a2, a3, a4] = a;
  auto &[b1, b2, b3, b4] = b;
  return {a1 - b1, a2 - b2, a3 - b3, a4 - b4};
}

struct BitVector {
  unsigned sz;
  unsigned blocksize;
  vector<unsigned long long> bit;
  vector<unsigned> sum;
  vector<S> srsum;

  BitVector() {}

  BitVector(unsigned siz) {
    sz = siz;
    blocksize = (sz + 63) >> 6;
    bit.assign(blocksize, 0ULL);
    sum.assign(blocksize, 0U);
    srsum.resize(sz);
  }

  inline void set(int k) { bit[k >> 6] |= 1ULL << (k & 63ULL); }

  inline void build() {
    sum[0] = 0ULL;
    for (int i = 1; i < blocksize; i++) {
      sum[i] = sum[i - 1] + __builtin_popcountll(bit[i - 1]);
    }
  }

  inline bool access(unsigned k) {
    return (bool((bit[k >> 6] >> (k & 63)) & 1));
  }

  inline int rank(int k) {
    return (sum[k >> 6] + __builtin_popcountll(bit[k >> 6] & ((1ULL << (k & 63)) - 1)));
  }

  inline void srsum_set(vector<S> &v) {
    for (int i = 0; i < sz - 1; i++) {
      srsum[i + 1] = srsum[i] + v[i];
    }
  }

  inline S rank_srsum(int l, int r) {
    return srsum[r] - srsum[l];
  }

  inline S rank_srsum(int r) {
    return srsum[r];
  }
};

class WaveletMatrix {
 private:
  unsigned n;
  unsigned bitsize, logn;
  vector<BitVector> b;
  vector<unsigned> zero;
  vector<int> cmp;
  vector<int> px;
  int MI, MA;

  inline unsigned compress(const int &x) {
    return lower_bound(cmp.begin(), cmp.end(), x) - begin(cmp);
  }

 public:
  // コンストラクタ
  WaveletMatrix() {}

  WaveletMatrix(vector<int> x, vector<int> y, vector<S> w) {
    n = x.size();
    px.resize(n);
    vector<tuple<int, int, S>> v(n);
    for (int i = 0; i < n; i++) {
      v[i] = {x[i], y[i], w[i]};
    }
    sort(v.begin(), v.end(), [](const tuple<int, int, S> &l, const tuple<int, int, S> &r) {
      return std::get<0>(l) < std::get<0>(r);
    });
    for (int i = 0; i < n; i++) {
      px[i] = std::get<0>(v[i]);
      y[i] = std::get<1>(v[i]);
      w[i] = std::get<2>(v[i]);
    }
    vector<unsigned> compressed(n);
    cmp.resize(y.size());
    cmp = y;
    sort(cmp.begin(), cmp.end());
    cmp.erase(unique(cmp.begin(), cmp.end()), cmp.end());
    vector<unsigned> tmpc(n);
    vector<S> tmp(n);
    unsigned size_mx = y.size();
    for (unsigned i = 0; i < n; i++) {
      compressed[i] = distance(cmp.begin(), lower_bound(cmp.begin(), cmp.end(), y[i]));
    }
    bitsize = bit_width(cmp.size());
    b.resize(bitsize + 1);
    zero.resize(bitsize, 0);
    int cur = 0;
    for (unsigned i = 0; i < bitsize; i++) {
      b[i] = BitVector(n + 1);
      b[i].srsum_set(w);
      cur = 0;
      for (unsigned j = 0; j < n; j++) {
        if (compressed[j] & (1U << (bitsize - i - 1))) {
          b[i].set(j);
        } else {
          zero[i]++;
          tmpc[cur] = compressed[j];
          tmp[cur] = w[j];
          cur++;
        }
      }

      b[i].build();
      for (int j = 0; j < n; j++) {
        if (compressed[j] & (1U << (bitsize - i - 1))) {
          tmpc[cur] = compressed[j];
          tmp[cur] = w[j];
          cur++;
        }
      }
      swap(tmpc, compressed);
      swap(tmp, w);
    }

    b[bitsize] = BitVector(n + 1);
    b[bitsize].srsum_set(w);
  }

  // v[l,r) の中で[mink,maxk)に入る値の総和を返す
  S range_sum(int vl, int vr, int mink, int maxk) {
    int D = mink;
    int U = compress(maxk);
    S res = e();
    auto dfs = [&](auto &rec, int d, int L, int R, int A, int B) -> void {
      if (U <= A or B <= D) return;
      if (D <= A and B <= U) {
        res = op(res, b[d].rank_srsum(L, R));
        return;
      }
      if (d == bitsize) {
        if (D <= A and A < U) {
          res = op(res, b[bitsize].rank_srsum(L, R));
        }
        return;
      }
      int C = (A + B) >> 1;
      int rank0_l = L - b[d].rank(L);
      int rank0_r = R - b[d].rank(R);
      int rank1_l = b[d].rank(L) + zero[d];
      int rank1_r = b[d].rank(R) + zero[d];

      rec(rec, d + 1, rank0_l, rank0_r, A, C);
      rec(rec, d + 1, rank1_l, rank1_r, C, B);
    };
    dfs(dfs, 0, vl, vr, 0, 1 << bitsize);
    return res;
  }

  // x座標が[l,r) かつy座標が[d,u) に入る点の総積を返す
  S rectangle_sum(int l, int r, int d, int u) {
    unsigned cr = distance(px.begin(), lower_bound(px.begin(), px.end(), r));
    return range_sum(l, cr, d, u);
  }
};

class RectangleAddRectangleSum {
 private:
  vector<int> x, y;
  vector<S> z;
  WaveletMatrix wm;

 public:
  RectangleAddRectangleSum(const vector<int> &x1, const vector<int> &y1, const vector<int> &x2, const vector<int> &y2, const vector<int> &weight) {
    int n = x1.size();
    x.resize(n * 4);
    y.resize(n * 4);
    z.resize(n * 4);

    for (int i = 0; i < n; i++) {
      int xl = x1[i];
      int yl = y1[i];
      int xr = x2[i];
      int yr = y2[i];
      mint w = weight[i];
      x[i * 4] = xl;
      y[i * 4] = yl;
      z[i * 4] = {w, w * -yl, w * -xl, w * +xl * yl};

      x[i * 4 + 1] = xl;
      y[i * 4 + 1] = yr;
      z[i * 4 + 1] = {-w, w * +yr, w * xl, w * -xl * yr};

      x[i * 4 + 2] = xr;
      y[i * 4 + 2] = yl;
      z[i * 4 + 2] = {-w, w * yl, w * xr, w * -xr * yl};

      x[i * 4 + 3] = xr;
      y[i * 4 + 3] = yr;
      z[i * 4 + 3] = {w, w * -yr, w * -xr, w * xr * yr};
    }

    wm = WaveletMatrix(x, y, z);
  }

  mint rectangle_sum(int xl, int yl, int xr, int yr) {
    mint resp = 0;
    mint resn = 0;
    {
      auto [a, b, c, d] = wm.rectangle_sum(0, xl, 0, yl);
      resp += a * xl * yl;
      resp += b * xl;
      resp += c * yl;
      resp += d;
    }
    {
      auto [a, b, c, d] = wm.rectangle_sum(0, xl, 0, yr);
      resn += a * xl * yr;
      resn += b * xl;
      resn += c * yr;
      resn += d;
    }
    {
      auto [a, b, c, d] = wm.rectangle_sum(0, xr, 0, yl);
      resn += a * xr * yl;
      resn += b * xr;
      resn += c * yl;
      resn += d;
    }
    {
      auto [a, b, c, d] = wm.rectangle_sum(0, xr, 0, yr);
      resp += a * xr * yr;
      resp += b * xr;
      resp += c * yr;
      resp += d;
    }
    return resp - resn;
  }
};
#line 6 "verify/LibraryChecker/data-structure/wavelet-matrix/query/RectangleAddRectangleSum.test.cpp"
int main() {
    cin.tie(0)->sync_with_stdio(0);
    int n, q;
    in(n, q);
    vector<int> x1(n), y1(n), x2(n), y2(n), w(n);
    rep(i, n) {
        in(x1[i], y1[i], x2[i], y2[i], w[i]);
    }

    RectangleAddRectangleSum wm(x1, y1, x2, y2, w);

    rep(i, q) {
        int l, d, r, u;
        in(l, d, r, u);
        out(wm.rectangle_sum(l, d, r, u).val());
    }
}
Back to top page