This documentation is automatically generated by competitive-verifier/competitive-verifier
#include "math/number-theory/SternBrocotTree.hpp"todo
todo
// m/n
vector<pair<char, int>> encode_path(lint m, lint n) {
vector<pair<char, int>> res;
while (m != 1 or n != 1) {
if (m < n) {
int num = (n - 1) / m;
res.emplace_back('L', num);
n -= m * num;
} else {
int num = (m - 1) / n;
res.emplace_back('R', num);
m -= n * num;
}
}
return res;
}
pair<long long, long long> decode_path(const vector<pair<char, int>>& path) {
long long n = 1;
long long m = 0;
long long n_ = 0;
long long m_ = 1;
if (path.empty()) return {1, 1};
for (const auto [c, num] : path) {
if (c == 'L') {
n_ += n * num;
m_ += m * num;
} else {
n += n_ * num;
m += m_ * num;
}
}
return {m + m_, n + n_};
}
// a/b, c/d
pair<long long, long long> sbt_lca(long long a, long long b, long long c, long long d) {
vector<pair<char, int>> p1 = encode_path(a, b);
vector<pair<char, int>> p2 = encode_path(c, d);
int siz = min(int(p1.size()), int(p2.size()));
if (siz == 0) return {1, 1};
long long n = 1;
long long m = 0;
long long n_ = 0;
long long m_ = 1;
for (int i = 0; i < siz; i++) {
if (p1[i].first != p2[i].first) {
break;
} else {
long long num = min(p1[i].second, p2[i].second);
if (p1[i].first == 'L') {
n_ += n * num;
m_ += m * num;
} else {
n += n_ * num;
m += m_ * num;
}
if (p1[i].second != p2[i].second) break;
}
}
return {m + m_, n + n_};
}
// a/b
pair<long long, long long> sbt_ancestor(int k, long long a, long long b) {
vector<pair<char, int>> path = encode_path(a, b);
long long n = 1;
long long m = 0;
long long n_ = 0;
long long m_ = 1;
for (auto [c, num] : path) {
long long len = min(k, num);
if (c == 'L') {
n_ += n * len;
m_ += m * len;
} else {
n += n_ * len;
m += m_ * len;
}
k -= len;
if (k == 0) break;
}
if (k == 0) {
return {m + m_, n + n_};
} else {
return {-1, 1};
}
}
vector<pair<long long, long long>> sbt_range(long long a, long long b) {
vector<pair<char, int>> path = encode_path(a, b);
long long n = 1;
long long m = 0;
long long n_ = 0;
long long m_ = 1;
if (path.empty()) return {{0, 1}, {1, 0}};
for (const auto [c, num] : path) {
if (c == 'L') {
n_ += n * num;
m_ += m * num;
} else {
n += n_ * num;
m += m_ * num;
}
}
return {{m, n}, {m_, n_}};
}#line 1 "math/number-theory/SternBrocotTree.hpp"
// m/n
vector<pair<char, int>> encode_path(lint m, lint n) {
vector<pair<char, int>> res;
while (m != 1 or n != 1) {
if (m < n) {
int num = (n - 1) / m;
res.emplace_back('L', num);
n -= m * num;
} else {
int num = (m - 1) / n;
res.emplace_back('R', num);
m -= n * num;
}
}
return res;
}
pair<long long, long long> decode_path(const vector<pair<char, int>>& path) {
long long n = 1;
long long m = 0;
long long n_ = 0;
long long m_ = 1;
if (path.empty()) return {1, 1};
for (const auto [c, num] : path) {
if (c == 'L') {
n_ += n * num;
m_ += m * num;
} else {
n += n_ * num;
m += m_ * num;
}
}
return {m + m_, n + n_};
}
// a/b, c/d
pair<long long, long long> sbt_lca(long long a, long long b, long long c, long long d) {
vector<pair<char, int>> p1 = encode_path(a, b);
vector<pair<char, int>> p2 = encode_path(c, d);
int siz = min(int(p1.size()), int(p2.size()));
if (siz == 0) return {1, 1};
long long n = 1;
long long m = 0;
long long n_ = 0;
long long m_ = 1;
for (int i = 0; i < siz; i++) {
if (p1[i].first != p2[i].first) {
break;
} else {
long long num = min(p1[i].second, p2[i].second);
if (p1[i].first == 'L') {
n_ += n * num;
m_ += m * num;
} else {
n += n_ * num;
m += m_ * num;
}
if (p1[i].second != p2[i].second) break;
}
}
return {m + m_, n + n_};
}
// a/b
pair<long long, long long> sbt_ancestor(int k, long long a, long long b) {
vector<pair<char, int>> path = encode_path(a, b);
long long n = 1;
long long m = 0;
long long n_ = 0;
long long m_ = 1;
for (auto [c, num] : path) {
long long len = min(k, num);
if (c == 'L') {
n_ += n * len;
m_ += m * len;
} else {
n += n_ * len;
m += m_ * len;
}
k -= len;
if (k == 0) break;
}
if (k == 0) {
return {m + m_, n + n_};
} else {
return {-1, 1};
}
}
vector<pair<long long, long long>> sbt_range(long long a, long long b) {
vector<pair<char, int>> path = encode_path(a, b);
long long n = 1;
long long m = 0;
long long n_ = 0;
long long m_ = 1;
if (path.empty()) return {{0, 1}, {1, 0}};
for (const auto [c, num] : path) {
if (c == 'L') {
n_ += n * num;
m_ += m * num;
} else {
n += n_ * num;
m += m_ * num;
}
}
return {{m, n}, {m_, n_}};
}