This documentation is automatically generated by competitive-verifier/competitive-verifier
#include "data-structure/wavelet-matrix/rectangle/RectangleSumPointAdd.hpp"
ウェーブレット行列 (+ BIT) を拡張して、2次元平面のクエリに答えられるようにしたデータ構造。
事前に与えられた点の重みに対して矩形総和取得 / 一点加算が可能。
WaveletMatrix<S, T> wm(vector<T> x, vector<T> y, vector<S> w)
$i$ 番目の点の座標を $(x_i, y_i)$、重みを $w_i$ として、データ構造を構築する。
S wm.rectangle_sum(T lx, T rx, T ly, T ry)
矩形領域 $lx \leq x \lt rx$ かつ $ly \leq y \lt ry$ 内の点の重みの総和を返す。
std::numeric_limits<T>::min()
$\leq lx \leq rx \leq$ std::numeric_limits<T>::max()
std::numeric_limits<T>::min()
$\leq ly \leq ry \leq$ std::numeric_limits<T>::max()
void wm.set(int p, S x)
p
番目の点の重みを x
に変更する。
void wm.add(int p, S x)
p
番目の点の重みに x
を加算する。
#include "../WaveletMatrixBinaryIndexedTree.hpp"
template <class T, class S>
class RectangleSumPointAdd {
private:
WaveletMatrix<T, S> wm;
vector<T> px;
vector<int> ord;
public:
RectangleSumPointAdd() {}
RectangleSumPointAdd(vector<T> x, vector<T> y, vector<S> w) {
int n = int(x.size());
ord.resize(n);
vector<tuple<T, T, S, int>> v(n);
for (int i = 0; i < n; i++) v[i] = {x[i], y[i], w[i], i};
sort(v.begin(), v.end(), [](const auto &a, const auto &b) {
return std::get<0>(a) < std::get<0>(b);
});
px.resize(n);
for (int i = 0; i < n; i++) {
px[i] = std::get<0>(v[i]);
y[i] = std::get<1>(v[i]);
w[i] = std::get<2>(v[i]);
ord[std::get<3>(v[i])] = i;
}
wm = WaveletMatrix<T, S>(y, w);
}
S rectangle_sum(T xl, T xr, T yl, T yr) {
int l = distance(px.begin(), lower_bound(px.begin(), px.end(), xl));
int r = distance(px.begin(), lower_bound(px.begin(), px.end(), xr));
return wm.range_sum(l, r, yl, yr);
}
void add(int p, S x) {
wm.add(ord[p], x);
}
void set(int p, S x) {
wm.set(ord[p], x);
}
};
#line 1 "data-structure/wavelet-matrix/WaveletMatrixBinaryIndexedTree.hpp"
struct BitVector {
unsigned sz;
unsigned blocksize;
vector<unsigned> bit, sum;
BitVector() {}
BitVector(unsigned siz) {
sz = siz;
blocksize = (sz + 31) >> 5;
bit.assign(blocksize, 0U);
sum.assign(blocksize, 0U);
}
inline void set(int k) { bit[k >> 5] |= 1U << (k & 31); }
inline void build() {
sum[0] = 0U;
for (int i = 1; i < blocksize; i++) {
sum[i] = sum[i - 1] + __builtin_popcount(bit[i - 1]);
}
}
inline bool access(unsigned k) {
return (bool((bit[k >> 5] >> (k & 31)) & 1));
}
inline int rank(int k) {
return (sum[k >> 5] + __builtin_popcount(bit[k >> 5] & ((1U << (k & 31)) - 1)));
}
};
template <class S, class T>
class WaveletMatrix {
private:
unsigned n;
unsigned bitsize;
vector<BitVector> b;
vector<fenwick_tree<S>> fen;
vector<unsigned> zero;
vector<T> cmp;
T MI, MA;
inline unsigned compress(const T &x) {
return lower_bound(cmp.begin(), cmp.end(), x) - begin(cmp);
}
public:
// コンストラクタ
WaveletMatrix() {}
WaveletMatrix(vector<T> v) {
MI = numeric_limits<T>::min();
MA = numeric_limits<T>::max();
n = v.size();
cmp = v;
sort(cmp.begin(), cmp.end());
cmp.erase(unique(cmp.begin(), cmp.end()), cmp.end());
vector<T> tmp(n);
vector<T> tmpc(n);
vector<T> compressed(n);
for (unsigned i = 0; i < n; i++) {
compressed[i] = distance(cmp.begin(), lower_bound(cmp.begin(), cmp.end(), v[i]));
}
bitsize = bit_width(cmp.size());
b.resize(bitsize + 1);
fen.resize(bitsize + 1);
zero.resize(bitsize, 0);
int cur = 0;
for (unsigned i = 0; i < bitsize; i++) {
b[i] = BitVector(n + 1);
fen[i] = fenwick_tree<T>(n);
cur = 0;
for (unsigned j = 0; j < n; j++) {
fen[i].add(j, v[j]);
if (compressed[j] & (1U << (bitsize - i - 1))) {
b[i].set(j);
} else {
zero[i]++;
tmpc[cur] = compressed[j];
tmp[cur] = v[j];
cur++;
}
}
b[i].build();
for (int j = 0; j < n; j++) {
if (compressed[j] & (1U << (bitsize - i - 1))) {
tmpc[cur] = compressed[j];
tmp[cur] = v[j];
cur++;
}
}
swap(tmpc, compressed);
swap(tmp, v);
}
b[bitsize] = BitVector(n + 1);
fen[bitsize] = fenwick_tree<T>(n);
for (unsigned i = 0; i < n; i++) {
fen[bitsize].add(i, v[i]);
}
}
WaveletMatrix(vector<T> v, vector<S> w) {
MI = numeric_limits<T>::min();
MA = numeric_limits<T>::max();
n = v.size();
cmp = v;
sort(cmp.begin(), cmp.end());
cmp.erase(unique(cmp.begin(), cmp.end()), cmp.end());
vector<S> tmp(n);
vector<T> tmpc(n);
vector<T> compressed(n);
for (unsigned i = 0; i < n; i++) {
compressed[i] = distance(cmp.begin(), lower_bound(cmp.begin(), cmp.end(), v[i]));
}
bitsize = bit_width(cmp.size());
b.resize(bitsize + 1);
fen.resize(bitsize + 1);
zero.resize(bitsize, 0);
int cur = 0;
for (unsigned i = 0; i < bitsize; i++) {
b[i] = BitVector(n + 1);
fen[i] = fenwick_tree<S>(n);
cur = 0;
for (unsigned j = 0; j < n; j++) {
fen[i].add(j, w[j]);
if (compressed[j] & (1U << (bitsize - i - 1))) {
b[i].set(j);
} else {
zero[i]++;
tmpc[cur] = compressed[j];
tmp[cur] = w[j];
cur++;
}
}
b[i].build();
for (int j = 0; j < n; j++) {
if (compressed[j] & (1U << (bitsize - i - 1))) {
tmpc[cur] = compressed[j];
tmp[cur] = w[j];
cur++;
}
}
swap(tmpc, compressed);
swap(tmp, w);
}
b[bitsize] = BitVector(n + 1);
fen[bitsize] = fenwick_tree<S>(n);
for (unsigned i = 0; i < n; i++) {
fen[bitsize].add(i, w[i]);
}
}
void set(int p, S x) {
unsigned cur = p;
S before = fen[0].get(p);
for (unsigned i = 0; i < bitsize; i++) {
fen[i].add(cur, x - before);
if (b[i].access(cur)) {
cur = zero[i] + b[i].rank(cur);
} else {
cur -= b[i].rank(cur);
}
}
fen[bitsize].add(cur, x - before);
}
void add(int p, S x) {
unsigned cur = p;
for (unsigned i = 0; i < bitsize; i++) {
fen[i].add(cur, x);
if (b[i].access(cur)) {
cur = zero[i] + b[i].rank(cur);
} else {
cur -= b[i].rank(cur);
}
}
fen[bitsize].add(cur, x);
}
S get(int p) {
return fen[0].get(p);
}
// v[l,r) の中で[mink,maxk)に入る値の総和を返す
S range_sum(int vl, int vr, T mink, T maxk) {
int D = compress(mink);
int U = compress(maxk);
S res = 0;
auto dfs = [&](auto &rec, int d, int L, int R, int A, int B) -> void {
if (U <= A or B <= D) return;
if (D <= A and B <= U) {
res += fen[d].sum(L, R);
return;
}
if (d == bitsize) {
if (D <= A and A < U) {
res += fen[bitsize].sum(L, R);
}
return;
}
int C = (A + B) >> 1;
int rank0_l = L - b[d].rank(L);
int rank0_r = R - b[d].rank(R);
int rank1_l = b[d].rank(L) + zero[d];
int rank1_r = b[d].rank(R) + zero[d];
rec(rec, d + 1, rank0_l, rank0_r, A, C);
rec(rec, d + 1, rank1_l, rank1_r, C, B);
};
dfs(dfs, 0, vl, vr, 0, 1 << bitsize);
return res;
}
};
#line 2 "data-structure/wavelet-matrix/rectangle/RectangleSumPointAdd.hpp"
template <class T, class S>
class RectangleSumPointAdd {
private:
WaveletMatrix<T, S> wm;
vector<T> px;
vector<int> ord;
public:
RectangleSumPointAdd() {}
RectangleSumPointAdd(vector<T> x, vector<T> y, vector<S> w) {
int n = int(x.size());
ord.resize(n);
vector<tuple<T, T, S, int>> v(n);
for (int i = 0; i < n; i++) v[i] = {x[i], y[i], w[i], i};
sort(v.begin(), v.end(), [](const auto &a, const auto &b) {
return std::get<0>(a) < std::get<0>(b);
});
px.resize(n);
for (int i = 0; i < n; i++) {
px[i] = std::get<0>(v[i]);
y[i] = std::get<1>(v[i]);
w[i] = std::get<2>(v[i]);
ord[std::get<3>(v[i])] = i;
}
wm = WaveletMatrix<T, S>(y, w);
}
S rectangle_sum(T xl, T xr, T yl, T yr) {
int l = distance(px.begin(), lower_bound(px.begin(), px.end(), xl));
int r = distance(px.begin(), lower_bound(px.begin(), px.end(), xr));
return wm.range_sum(l, r, yl, yr);
}
void add(int p, S x) {
wm.add(ord[p], x);
}
void set(int p, S x) {
wm.set(ord[p], x);
}
};