lmori's Library

This documentation is automatically generated by competitive-verifier/competitive-verifier

View the Project on GitHub lmorinn/library

:warning: Range Linear Add Range Sum
(data-structure/segment-tree/query/RangeLinearAddRangeSum.hpp)

概要

todo

計算量

todo

Depends on

Code

#include "../LazySegmentTree.hpp"
class RangeLinearAddRangeSum {
 private:
  static constexpr long long INF = 8e18;
  static constexpr int INFI = int(1e9) + 10;

  struct S {
    long long sum;
    int l, r;
  };
  struct F {
    long long a, b;
  };

  static S op(S a, S b) {
    return S{a.sum + b.sum, min(a.l, b.l), max(a.r, b.r)};
  }
  static S e() {
    return S{0, INFI, -INFI};
  }

  static S mapping(F f, S s) {
    return {s.sum + (f.a * (s.l + s.r - 1) + f.b * 2) * (s.r - s.l) / 2, s.l, s.r};
  }

  static F composition(F f, F g) {
    return {f.a + g.a, f.b + g.b};
  }

  static F id() {
    return F{0, 0};
  }

  lazy_segtree<S, op, e, F, mapping, composition, id> seg;

 public:
  RangeLinearAddRangeSum(const vector<long long> &v) {
    int n = int(v.size());
    vector<S> tmp(n);
    for (int i = 0; i < n; i++) {
      tmp[i].l = i;
      tmp[i].r = i + 1;
      tmp[i].sum = v[i];
    }
    seg = lazy_segtree<S, op, e, F, mapping, composition, id>(tmp);
  }

  void set(int i, S x) {
    seg.set(i, x);
  }
  S get(int i) {
    return seg.get(i);
  }
  S all_prod() {
    return seg.all_prod();
  }
  S prod(int l, int r) {
    return seg.prod(l, r);
  }
  void apply(int l, int r, F f) {
    seg.apply(l, r, F{f.a, f.b - f.a * get(l).l});
  }
  void apply(int i, F f) {
    seg.apply(i, F{f.a, f.b - f.a * get(i).l});
  }

  template <bool (*g)(S)>
  int max_right(int l) {
    return seg.max_right(l, [](S x) { return g(x); });
  }
  template <bool (*g)(S)>
  int min_left(int r) {
    return seg.min_left(r, [](S x) { return g(x); });
  }
};
#line 1 "data-structure/segment-tree/LazySegmentTree.hpp"

template <class S,
          auto op,
          auto e,
          class F,
          auto mapping,
          auto composition,
          auto id>
struct lazy_segtree {
 private:
  unsigned int seg_bit_ceil(unsigned int n) {
    unsigned int x = 1;
    while (x < (unsigned int)(n)) x *= 2;
    return x;
  }

 public:
  static_assert(std::is_convertible_v<decltype(op), std::function<S(S, S)>>,
                "op must work as S(S, S)");
  static_assert(std::is_convertible_v<decltype(e), std::function<S()>>,
                "e must work as S()");
  static_assert(
      std::is_convertible_v<decltype(mapping), std::function<S(F, S)>>,
      "mapping must work as F(F, S)");
  static_assert(
      std::is_convertible_v<decltype(composition), std::function<F(F, F)>>,
      "compostiion must work as F(F, F)");
  static_assert(std::is_convertible_v<decltype(id), std::function<F()>>,
                "id must work as F()");
  lazy_segtree() : lazy_segtree(0) {}
  explicit lazy_segtree(int n) : lazy_segtree(std::vector<S>(n, e())) {}
  explicit lazy_segtree(const std::vector<S>& v) : _n(int(v.size())) {
    size = (int)seg_bit_ceil((unsigned int)(_n));
    log = __builtin_ctz((unsigned int)size);
    d = std::vector<S>(2 * size, e());
    lz = std::vector<F>(size, id());
    for (int i = 0; i < _n; i++) d[size + i] = v[i];
    for (int i = size - 1; i >= 1; i--) {
      update(i);
    }
  }

  void set(int p, S x) {
    assert(0 <= p && p < _n);
    p += size;
    for (int i = log; i >= 1; i--) push(p >> i);
    d[p] = x;
    for (int i = 1; i <= log; i++) update(p >> i);
  }

  S get(int p) {
    assert(0 <= p && p < _n);
    p += size;
    for (int i = log; i >= 1; i--) push(p >> i);
    return d[p];
  }

  S prod(int l, int r) {
    assert(0 <= l && l <= r && r <= _n);
    if (l == r) return e();

    l += size;
    r += size;

    for (int i = log; i >= 1; i--) {
      if (((l >> i) << i) != l) push(l >> i);
      if (((r >> i) << i) != r) push((r - 1) >> i);
    }

    S sml = e(), smr = e();
    while (l < r) {
      if (l & 1) sml = op(sml, d[l++]);
      if (r & 1) smr = op(d[--r], smr);
      l >>= 1;
      r >>= 1;
    }

    return op(sml, smr);
  }

  S all_prod() { return d[1]; }

  void apply(int p, F f) {
    assert(0 <= p && p < _n);
    p += size;
    for (int i = log; i >= 1; i--) push(p >> i);
    d[p] = mapping(f, d[p]);
    for (int i = 1; i <= log; i++) update(p >> i);
  }
  void apply(int l, int r, F f) {
    assert(0 <= l && l <= r && r <= _n);
    if (l == r) return;

    l += size;
    r += size;

    for (int i = log; i >= 1; i--) {
      if (((l >> i) << i) != l) push(l >> i);
      if (((r >> i) << i) != r) push((r - 1) >> i);
    }

    {
      int l2 = l, r2 = r;
      while (l < r) {
        if (l & 1) all_apply(l++, f);
        if (r & 1) all_apply(--r, f);
        l >>= 1;
        r >>= 1;
      }
      l = l2;
      r = r2;
    }

    for (int i = 1; i <= log; i++) {
      if (((l >> i) << i) != l) update(l >> i);
      if (((r >> i) << i) != r) update((r - 1) >> i);
    }
  }

  template <bool (*g)(S)>
  int max_right(int l) {
    return max_right(l, [](S x) { return g(x); });
  }
  template <class G>
  int max_right(int l, G g) {
    assert(0 <= l && l <= _n);
    assert(g(e()));
    if (l == _n) return _n;
    l += size;
    for (int i = log; i >= 1; i--) push(l >> i);
    S sm = e();
    do {
      while (l % 2 == 0) l >>= 1;
      if (!g(op(sm, d[l]))) {
        while (l < size) {
          push(l);
          l = (2 * l);
          if (g(op(sm, d[l]))) {
            sm = op(sm, d[l]);
            l++;
          }
        }
        return l - size;
      }
      sm = op(sm, d[l]);
      l++;
    } while ((l & -l) != l);
    return _n;
  }

  template <bool (*g)(S)>
  int min_left(int r) {
    return min_left(r, [](S x) { return g(x); });
  }
  template <class G>
  int min_left(int r, G g) {
    assert(0 <= r && r <= _n);
    assert(g(e()));
    if (r == 0) return 0;
    r += size;
    for (int i = log; i >= 1; i--) push((r - 1) >> i);
    S sm = e();
    do {
      r--;
      while (r > 1 && (r % 2)) r >>= 1;
      if (!g(op(d[r], sm))) {
        while (r < size) {
          push(r);
          r = (2 * r + 1);
          if (g(op(d[r], sm))) {
            sm = op(d[r], sm);
            r--;
          }
        }
        return r + 1 - size;
      }
      sm = op(d[r], sm);
    } while ((r & -r) != r);
    return 0;
  }

 private:
  int _n, size, log;
  std::vector<S> d;
  std::vector<F> lz;

  void update(int k) { d[k] = op(d[2 * k], d[2 * k + 1]); }
  void all_apply(int k, F f) {
    d[k] = mapping(f, d[k]);
    if (k < size) lz[k] = composition(f, lz[k]);
  }
  void push(int k) {
    all_apply(2 * k, lz[k]);
    all_apply(2 * k + 1, lz[k]);
    lz[k] = id();
  }
};
#line 2 "data-structure/segment-tree/query/RangeLinearAddRangeSum.hpp"
class RangeLinearAddRangeSum {
 private:
  static constexpr long long INF = 8e18;
  static constexpr int INFI = int(1e9) + 10;

  struct S {
    long long sum;
    int l, r;
  };
  struct F {
    long long a, b;
  };

  static S op(S a, S b) {
    return S{a.sum + b.sum, min(a.l, b.l), max(a.r, b.r)};
  }
  static S e() {
    return S{0, INFI, -INFI};
  }

  static S mapping(F f, S s) {
    return {s.sum + (f.a * (s.l + s.r - 1) + f.b * 2) * (s.r - s.l) / 2, s.l, s.r};
  }

  static F composition(F f, F g) {
    return {f.a + g.a, f.b + g.b};
  }

  static F id() {
    return F{0, 0};
  }

  lazy_segtree<S, op, e, F, mapping, composition, id> seg;

 public:
  RangeLinearAddRangeSum(const vector<long long> &v) {
    int n = int(v.size());
    vector<S> tmp(n);
    for (int i = 0; i < n; i++) {
      tmp[i].l = i;
      tmp[i].r = i + 1;
      tmp[i].sum = v[i];
    }
    seg = lazy_segtree<S, op, e, F, mapping, composition, id>(tmp);
  }

  void set(int i, S x) {
    seg.set(i, x);
  }
  S get(int i) {
    return seg.get(i);
  }
  S all_prod() {
    return seg.all_prod();
  }
  S prod(int l, int r) {
    return seg.prod(l, r);
  }
  void apply(int l, int r, F f) {
    seg.apply(l, r, F{f.a, f.b - f.a * get(l).l});
  }
  void apply(int i, F f) {
    seg.apply(i, F{f.a, f.b - f.a * get(i).l});
  }

  template <bool (*g)(S)>
  int max_right(int l) {
    return seg.max_right(l, [](S x) { return g(x); });
  }
  template <bool (*g)(S)>
  int min_left(int r) {
    return seg.min_left(r, [](S x) { return g(x); });
  }
};
Back to top page