This documentation is automatically generated by competitive-verifier/competitive-verifier
#include "data-structure/segment-tree/SegmentTreeBeatsChminChmax.hpp"
todo
todo
template <class T>
class SegtreeBeats {
private:
T MA, MI;
int n;
int n0;
vector<T> max_1_val, max_2_val, min_1_val, min_2_val, sum, add;
vector<int> max_1_cnt, min_1_cnt, len;
void query_chmin(int a, int b, int k, int l, int r, T x) {
if (b <= l or r <= a or max_1_val[k] <= x) {
return;
}
if (a <= l and r <= b and max_2_val[k] < x) {
update_node_max(k, x);
return;
}
push(k);
query_chmin(a, b, (k << 1) | 1, l, (l + r) >> 1, x);
query_chmin(a, b, (k + 1) << 1, (l + r) >> 1, r, x);
update(k);
}
void query_chmax(int a, int b, int k, int l, int r, T x) {
if (b <= l or r <= a or x <= min_1_val[k]) {
return;
}
if (a <= l and r <= b and x < min_2_val[k]) {
update_node_min(k, x);
return;
}
push(k);
query_chmax(a, b, (k << 1) | 1, l, (l + r) >> 1, x);
query_chmax(a, b, (k + 1) << 1, (l + r) >> 1, r, x);
update(k);
}
T query_max(int a, int b, int k, int l, int r) {
if (b <= l or r <= a) {
return MI;
}
if (a <= l and r <= b) {
return max_1_val[k];
}
push(k);
T l_max = query_max(a, b, (k << 1) | 1, l, (l + r) >> 1);
T r_max = query_max(a, b, (k + 1) << 1, (l + r) >> 1, r);
return max(l_max, r_max);
}
T query_min(int a, int b, int k, int l, int r) {
if (b <= l or r <= a) {
return MA;
}
if (a <= l and r <= b) {
return min_1_val[k];
}
push(k);
T l_max = query_min(a, b, (k << 1) | 1, l, (l + r) >> 1);
T r_max = query_min(a, b, (k + 1) << 1, (l + r) >> 1, r);
return min(l_max, r_max);
}
T query_sum(int a, int b, int k, int l, int r) {
if (b <= l or r <= a) {
return 0;
}
if (a <= l and r <= b) {
return sum[k];
}
push(k);
T l_sum = query_sum(a, b, (k << 1) | 1, l, (l + r) >> 1);
T r_sum = query_sum(a, b, (k + 1) << 1, (l + r) >> 1, r);
return l_sum + r_sum;
}
void query_add(int a, int b, int k, int l, int r, T x) {
if (b <= l or r <= a) {
return;
}
if (a <= l and r <= b) {
add_node(k, x);
return;
}
push(k);
query_add(a, b, (k << 1) | 1, l, (l + r) >> 1, x);
query_add(a, b, (k + 1) << 1, (l + r) >> 1, r, x);
update(k);
}
void update_node_max(int k, T x) {
sum[k] += (x - max_1_val[k]) * max_1_cnt[k];
if (max_1_val[k] == min_1_val[k]) {
max_1_val[k] = x;
min_1_val[k] = x;
} else if (max_1_val[k] == min_2_val[k]) {
max_1_val[k] = x;
min_2_val[k] = x;
} else {
max_1_val[k] = x;
}
}
void update_node_min(int k, T x) {
sum[k] += (x - min_1_val[k]) * min_1_cnt[k];
if (max_1_val[k] == min_1_val[k]) {
max_1_val[k] = x;
min_1_val[k] = x;
} else if (max_2_val[k] == min_1_val[k]) {
max_2_val[k] = x;
min_1_val[k] = x;
} else {
min_1_val[k] = x;
}
}
void add_node(int k, T x) {
max_1_val[k] += x;
if (max_2_val[k] != MI) {
max_2_val[k] += x;
}
min_1_val[k] += x;
if (min_2_val[k] != MA) {
min_2_val[k] += x;
}
sum[k] += len[k] * x;
add[k] += x;
}
void push(int k) {
if (add[k] != 0) {
add_node((k << 1) | 1, add[k]);
add_node((k + 1) << 1, add[k]);
add[k] = 0;
}
if (max_1_val[k] < max_1_val[(k << 1) | 1]) {
update_node_max((k << 1) | 1, max_1_val[k]);
}
if (max_1_val[k] < max_1_val[(k + 1) << 1]) {
update_node_max((k + 1) << 1, max_1_val[k]);
}
if (min_1_val[k] > min_1_val[(k << 1) | 1]) {
update_node_min((k << 1) | 1, min_1_val[k]);
}
if (min_1_val[k] > min_1_val[(k + 1) << 1]) {
update_node_min((k + 1) << 1, min_1_val[k]);
}
}
void update(int k) {
sum[k] = sum[(k << 1) | 1] + sum[(k + 1) << 1];
if (max_1_val[(k << 1) | 1] < max_1_val[(k + 1) << 1]) {
max_1_val[k] = max_1_val[(k + 1) << 1];
max_1_cnt[k] = max_1_cnt[(k + 1) << 1];
max_2_val[k] = max(max_1_val[(k << 1) | 1], max_2_val[(k + 1) << 1]);
} else if (max_1_val[(k << 1) | 1] > max_1_val[(k + 1) << 1]) {
max_1_val[k] = max_1_val[(k << 1) | 1];
max_1_cnt[k] = max_1_cnt[(k << 1) | 1];
max_2_val[k] = max(max_2_val[(k << 1) | 1], max_1_val[(k + 1) << 1]);
} else {
max_1_val[k] = max_1_val[(k << 1) | 1];
max_1_cnt[k] = max_1_cnt[(k << 1) | 1] + max_1_cnt[(k + 1) << 1];
max_2_val[k] = max(max_2_val[(k << 1) | 1], max_2_val[(k + 1) << 1]);
}
if (min_1_val[(k << 1) | 1] < min_1_val[(k + 1) << 1]) {
min_1_val[k] = min_1_val[(k << 1) | 1];
min_1_cnt[k] = min_1_cnt[(k << 1) | 1];
min_2_val[k] = min(min_2_val[(k << 1) | 1], min_1_val[(k + 1) << 1]);
} else if (min_1_val[(k << 1) | 1] > min_1_val[(k + 1) << 1]) {
min_1_val[k] = min_1_val[(k + 1) << 1];
min_1_cnt[k] = min_1_cnt[(k + 1) << 1];
min_2_val[k] = min(min_1_val[(k << 1) | 1], min_2_val[(k + 1) << 1]);
} else {
min_1_val[k] = min_1_val[(k << 1) | 1];
min_1_cnt[k] = min_1_cnt[(k << 1) | 1] + min_1_cnt[(k + 1) << 1];
min_2_val[k] = min(min_2_val[(k << 1) | 1], min_2_val[(k + 1) << 1]);
}
}
public:
SegtreeBeats(const vector<T> &v) {
MA = numeric_limits<T>::max();
MI = numeric_limits<T>::min();
n = v.size();
n0 = 1;
while (n0 < n) {
n0 <<= 1;
}
sum.assign((n0 << 1), 0);
add.assign((n0 << 1), 0);
len.assign((n0 << 1), 0);
max_1_val.assign((n0 << 1), MI);
max_2_val.assign((n0 << 1), MI);
min_1_val.assign((n0 << 1), MA);
min_2_val.assign((n0 << 1), MA);
max_1_cnt.assign((n0 << 1), 0);
min_1_cnt.assign((n0 << 1), 0);
for (int i = 0; i < (n0 << 1); i++) {
add[i] = 0;
}
len[0] = n0;
for (int i = 0; i < n0 - 1; i++) {
len[(i << 1) | 1] = (len[i] >> 1);
len[(i + 1) << 1] = (len[i] >> 1);
}
for (int i = 0; i < n; i++) {
max_1_val[n0 - 1 + i] = v[i];
min_1_val[n0 - 1 + i] = v[i];
sum[n0 - 1 + i] = v[i];
max_1_cnt[n0 - 1 + i] = 1;
min_1_cnt[n0 - 1 + i] = 1;
}
for (int i = n0 - 2; i >= 0; i--) {
update(i);
}
}
void range_chmin(int l, int r, T x) {
query_chmin(l, r, 0, 0, n0, x);
}
void range_chmax(int l, int r, T x) {
query_chmax(l, r, 0, 0, n0, x);
}
void range_add(int l, int r, T x) {
query_add(l, r, 0, 0, n0, x);
}
void range_update(int l, int r, T x) {
query_chmax(l, r, MA);
query_chmin(l, r, x);
}
T range_max(int l, int r) {
return query_max(l, r, 0, 0, n0);
}
T range_min(int l, int r) {
return query_min(l, r, 0, 0, n0);
}
T range_sum(int l, int r) {
return query_sum(l, r, 0, 0, n0);
}
T get(int p) {
return range_sum(p, p + 1);
}
T set(int p, T x) {
range_update(p, p + 1, x);
}
void print() {
for (int i = 0; i < n; i++) {
cout << get(i) << (i == n - 1) ? '\n' : " ";
}
}
};
#line 1 "data-structure/segment-tree/SegmentTreeBeatsChminChmax.hpp"
template <class T>
class SegtreeBeats {
private:
T MA, MI;
int n;
int n0;
vector<T> max_1_val, max_2_val, min_1_val, min_2_val, sum, add;
vector<int> max_1_cnt, min_1_cnt, len;
void query_chmin(int a, int b, int k, int l, int r, T x) {
if (b <= l or r <= a or max_1_val[k] <= x) {
return;
}
if (a <= l and r <= b and max_2_val[k] < x) {
update_node_max(k, x);
return;
}
push(k);
query_chmin(a, b, (k << 1) | 1, l, (l + r) >> 1, x);
query_chmin(a, b, (k + 1) << 1, (l + r) >> 1, r, x);
update(k);
}
void query_chmax(int a, int b, int k, int l, int r, T x) {
if (b <= l or r <= a or x <= min_1_val[k]) {
return;
}
if (a <= l and r <= b and x < min_2_val[k]) {
update_node_min(k, x);
return;
}
push(k);
query_chmax(a, b, (k << 1) | 1, l, (l + r) >> 1, x);
query_chmax(a, b, (k + 1) << 1, (l + r) >> 1, r, x);
update(k);
}
T query_max(int a, int b, int k, int l, int r) {
if (b <= l or r <= a) {
return MI;
}
if (a <= l and r <= b) {
return max_1_val[k];
}
push(k);
T l_max = query_max(a, b, (k << 1) | 1, l, (l + r) >> 1);
T r_max = query_max(a, b, (k + 1) << 1, (l + r) >> 1, r);
return max(l_max, r_max);
}
T query_min(int a, int b, int k, int l, int r) {
if (b <= l or r <= a) {
return MA;
}
if (a <= l and r <= b) {
return min_1_val[k];
}
push(k);
T l_max = query_min(a, b, (k << 1) | 1, l, (l + r) >> 1);
T r_max = query_min(a, b, (k + 1) << 1, (l + r) >> 1, r);
return min(l_max, r_max);
}
T query_sum(int a, int b, int k, int l, int r) {
if (b <= l or r <= a) {
return 0;
}
if (a <= l and r <= b) {
return sum[k];
}
push(k);
T l_sum = query_sum(a, b, (k << 1) | 1, l, (l + r) >> 1);
T r_sum = query_sum(a, b, (k + 1) << 1, (l + r) >> 1, r);
return l_sum + r_sum;
}
void query_add(int a, int b, int k, int l, int r, T x) {
if (b <= l or r <= a) {
return;
}
if (a <= l and r <= b) {
add_node(k, x);
return;
}
push(k);
query_add(a, b, (k << 1) | 1, l, (l + r) >> 1, x);
query_add(a, b, (k + 1) << 1, (l + r) >> 1, r, x);
update(k);
}
void update_node_max(int k, T x) {
sum[k] += (x - max_1_val[k]) * max_1_cnt[k];
if (max_1_val[k] == min_1_val[k]) {
max_1_val[k] = x;
min_1_val[k] = x;
} else if (max_1_val[k] == min_2_val[k]) {
max_1_val[k] = x;
min_2_val[k] = x;
} else {
max_1_val[k] = x;
}
}
void update_node_min(int k, T x) {
sum[k] += (x - min_1_val[k]) * min_1_cnt[k];
if (max_1_val[k] == min_1_val[k]) {
max_1_val[k] = x;
min_1_val[k] = x;
} else if (max_2_val[k] == min_1_val[k]) {
max_2_val[k] = x;
min_1_val[k] = x;
} else {
min_1_val[k] = x;
}
}
void add_node(int k, T x) {
max_1_val[k] += x;
if (max_2_val[k] != MI) {
max_2_val[k] += x;
}
min_1_val[k] += x;
if (min_2_val[k] != MA) {
min_2_val[k] += x;
}
sum[k] += len[k] * x;
add[k] += x;
}
void push(int k) {
if (add[k] != 0) {
add_node((k << 1) | 1, add[k]);
add_node((k + 1) << 1, add[k]);
add[k] = 0;
}
if (max_1_val[k] < max_1_val[(k << 1) | 1]) {
update_node_max((k << 1) | 1, max_1_val[k]);
}
if (max_1_val[k] < max_1_val[(k + 1) << 1]) {
update_node_max((k + 1) << 1, max_1_val[k]);
}
if (min_1_val[k] > min_1_val[(k << 1) | 1]) {
update_node_min((k << 1) | 1, min_1_val[k]);
}
if (min_1_val[k] > min_1_val[(k + 1) << 1]) {
update_node_min((k + 1) << 1, min_1_val[k]);
}
}
void update(int k) {
sum[k] = sum[(k << 1) | 1] + sum[(k + 1) << 1];
if (max_1_val[(k << 1) | 1] < max_1_val[(k + 1) << 1]) {
max_1_val[k] = max_1_val[(k + 1) << 1];
max_1_cnt[k] = max_1_cnt[(k + 1) << 1];
max_2_val[k] = max(max_1_val[(k << 1) | 1], max_2_val[(k + 1) << 1]);
} else if (max_1_val[(k << 1) | 1] > max_1_val[(k + 1) << 1]) {
max_1_val[k] = max_1_val[(k << 1) | 1];
max_1_cnt[k] = max_1_cnt[(k << 1) | 1];
max_2_val[k] = max(max_2_val[(k << 1) | 1], max_1_val[(k + 1) << 1]);
} else {
max_1_val[k] = max_1_val[(k << 1) | 1];
max_1_cnt[k] = max_1_cnt[(k << 1) | 1] + max_1_cnt[(k + 1) << 1];
max_2_val[k] = max(max_2_val[(k << 1) | 1], max_2_val[(k + 1) << 1]);
}
if (min_1_val[(k << 1) | 1] < min_1_val[(k + 1) << 1]) {
min_1_val[k] = min_1_val[(k << 1) | 1];
min_1_cnt[k] = min_1_cnt[(k << 1) | 1];
min_2_val[k] = min(min_2_val[(k << 1) | 1], min_1_val[(k + 1) << 1]);
} else if (min_1_val[(k << 1) | 1] > min_1_val[(k + 1) << 1]) {
min_1_val[k] = min_1_val[(k + 1) << 1];
min_1_cnt[k] = min_1_cnt[(k + 1) << 1];
min_2_val[k] = min(min_1_val[(k << 1) | 1], min_2_val[(k + 1) << 1]);
} else {
min_1_val[k] = min_1_val[(k << 1) | 1];
min_1_cnt[k] = min_1_cnt[(k << 1) | 1] + min_1_cnt[(k + 1) << 1];
min_2_val[k] = min(min_2_val[(k << 1) | 1], min_2_val[(k + 1) << 1]);
}
}
public:
SegtreeBeats(const vector<T> &v) {
MA = numeric_limits<T>::max();
MI = numeric_limits<T>::min();
n = v.size();
n0 = 1;
while (n0 < n) {
n0 <<= 1;
}
sum.assign((n0 << 1), 0);
add.assign((n0 << 1), 0);
len.assign((n0 << 1), 0);
max_1_val.assign((n0 << 1), MI);
max_2_val.assign((n0 << 1), MI);
min_1_val.assign((n0 << 1), MA);
min_2_val.assign((n0 << 1), MA);
max_1_cnt.assign((n0 << 1), 0);
min_1_cnt.assign((n0 << 1), 0);
for (int i = 0; i < (n0 << 1); i++) {
add[i] = 0;
}
len[0] = n0;
for (int i = 0; i < n0 - 1; i++) {
len[(i << 1) | 1] = (len[i] >> 1);
len[(i + 1) << 1] = (len[i] >> 1);
}
for (int i = 0; i < n; i++) {
max_1_val[n0 - 1 + i] = v[i];
min_1_val[n0 - 1 + i] = v[i];
sum[n0 - 1 + i] = v[i];
max_1_cnt[n0 - 1 + i] = 1;
min_1_cnt[n0 - 1 + i] = 1;
}
for (int i = n0 - 2; i >= 0; i--) {
update(i);
}
}
void range_chmin(int l, int r, T x) {
query_chmin(l, r, 0, 0, n0, x);
}
void range_chmax(int l, int r, T x) {
query_chmax(l, r, 0, 0, n0, x);
}
void range_add(int l, int r, T x) {
query_add(l, r, 0, 0, n0, x);
}
void range_update(int l, int r, T x) {
query_chmax(l, r, MA);
query_chmin(l, r, x);
}
T range_max(int l, int r) {
return query_max(l, r, 0, 0, n0);
}
T range_min(int l, int r) {
return query_min(l, r, 0, 0, n0);
}
T range_sum(int l, int r) {
return query_sum(l, r, 0, 0, n0);
}
T get(int p) {
return range_sum(p, p + 1);
}
T set(int p, T x) {
range_update(p, p + 1, x);
}
void print() {
for (int i = 0; i < n; i++) {
cout << get(i) << (i == n - 1) ? '\n' : " ";
}
}
};